$$$\left(2 x - 1\right)^{4}$$$의 적분
사용자 입력
$$$\int \left(2 x - 1\right)^{4}\, dx$$$을(를) 구하시오.
풀이
$$$u=2 x - 1$$$라 하자.
그러면 $$$du=\left(2 x - 1\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\left(2 x - 1\right)^{4} d x}}} = {\color{red}{\int{\frac{u^{4}}{2} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = u^{4}$$$에 적용하세요:
$${\color{red}{\int{\frac{u^{4}}{2} d u}}} = {\color{red}{\left(\frac{\int{u^{4} d u}}{2}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=4$$$에 적용합니다:
$$\frac{{\color{red}{\int{u^{4} d u}}}}{2}=\frac{{\color{red}{\frac{u^{1 + 4}}{1 + 4}}}}{2}=\frac{{\color{red}{\left(\frac{u^{5}}{5}\right)}}}{2}$$
다음 $$$u=2 x - 1$$$을 기억하라:
$$\frac{{\color{red}{u}}^{5}}{10} = \frac{{\color{red}{\left(2 x - 1\right)}}^{5}}{10}$$
따라서,
$$\int{\left(2 x - 1\right)^{4} d x} = \frac{\left(2 x - 1\right)^{5}}{10}$$
적분 상수를 추가하세요:
$$\int{\left(2 x - 1\right)^{4} d x} = \frac{\left(2 x - 1\right)^{5}}{10}+C$$
정답
$$$\int \left(2 x - 1\right)^{4}\, dx = \frac{\left(2 x - 1\right)^{5}}{10} + C$$$A