$$$\frac{2 v}{v - 1}$$$의 적분
사용자 입력
$$$\int \frac{2 v}{v - 1}\, dv$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=2$$$와 $$$f{\left(v \right)} = \frac{v}{v - 1}$$$에 적용하세요:
$${\color{red}{\int{\frac{2 v}{v - 1} d v}}} = {\color{red}{\left(2 \int{\frac{v}{v - 1} d v}\right)}}$$
분수식을 다시 쓰고 분리하세요:
$$2 {\color{red}{\int{\frac{v}{v - 1} d v}}} = 2 {\color{red}{\int{\left(1 + \frac{1}{v - 1}\right)d v}}}$$
각 항별로 적분하십시오:
$$2 {\color{red}{\int{\left(1 + \frac{1}{v - 1}\right)d v}}} = 2 {\color{red}{\left(\int{1 d v} + \int{\frac{1}{v - 1} d v}\right)}}$$
상수 법칙 $$$\int c\, dv = c v$$$을 $$$c=1$$$에 적용하십시오:
$$2 \int{\frac{1}{v - 1} d v} + 2 {\color{red}{\int{1 d v}}} = 2 \int{\frac{1}{v - 1} d v} + 2 {\color{red}{v}}$$
$$$u=v - 1$$$라 하자.
그러면 $$$du=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dv = du$$$임을 얻습니다.
따라서,
$$2 v + 2 {\color{red}{\int{\frac{1}{v - 1} d v}}} = 2 v + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 v + 2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 v + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
다음 $$$u=v - 1$$$을 기억하라:
$$2 v + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 v + 2 \ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}$$
따라서,
$$\int{\frac{2 v}{v - 1} d v} = 2 v + 2 \ln{\left(\left|{v - 1}\right| \right)}$$
간단히 하시오:
$$\int{\frac{2 v}{v - 1} d v} = 2 \left(v + \ln{\left(\left|{v - 1}\right| \right)}\right)$$
적분 상수를 추가하세요:
$$\int{\frac{2 v}{v - 1} d v} = 2 \left(v + \ln{\left(\left|{v - 1}\right| \right)}\right)+C$$
정답
$$$\int \frac{2 v}{v - 1}\, dv = 2 \left(v + \ln\left(\left|{v - 1}\right|\right)\right) + C$$$A