$$$\frac{2500 - 3 t}{t^{2}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{2500 - 3 t}{t^{2}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{2500 - 3 t}{t^{2}}\, dt$$$을(를) 구하시오.

풀이

Expand the expression:

$${\color{red}{\int{\frac{2500 - 3 t}{t^{2}} d t}}} = {\color{red}{\int{\left(- \frac{3}{t} + \frac{2500}{t^{2}}\right)d t}}}$$

각 항별로 적분하십시오:

$${\color{red}{\int{\left(- \frac{3}{t} + \frac{2500}{t^{2}}\right)d t}}} = {\color{red}{\left(\int{\frac{2500}{t^{2}} d t} - \int{\frac{3}{t} d t}\right)}}$$

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=3$$$$$$f{\left(t \right)} = \frac{1}{t}$$$에 적용하세요:

$$\int{\frac{2500}{t^{2}} d t} - {\color{red}{\int{\frac{3}{t} d t}}} = \int{\frac{2500}{t^{2}} d t} - {\color{red}{\left(3 \int{\frac{1}{t} d t}\right)}}$$

$$$\frac{1}{t}$$$의 적분은 $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:

$$\int{\frac{2500}{t^{2}} d t} - 3 {\color{red}{\int{\frac{1}{t} d t}}} = \int{\frac{2500}{t^{2}} d t} - 3 {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=2500$$$$$$f{\left(t \right)} = \frac{1}{t^{2}}$$$에 적용하세요:

$$- 3 \ln{\left(\left|{t}\right| \right)} + {\color{red}{\int{\frac{2500}{t^{2}} d t}}} = - 3 \ln{\left(\left|{t}\right| \right)} + {\color{red}{\left(2500 \int{\frac{1}{t^{2}} d t}\right)}}$$

멱법칙($$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:

$$- 3 \ln{\left(\left|{t}\right| \right)} + 2500 {\color{red}{\int{\frac{1}{t^{2}} d t}}}=- 3 \ln{\left(\left|{t}\right| \right)} + 2500 {\color{red}{\int{t^{-2} d t}}}=- 3 \ln{\left(\left|{t}\right| \right)} + 2500 {\color{red}{\frac{t^{-2 + 1}}{-2 + 1}}}=- 3 \ln{\left(\left|{t}\right| \right)} + 2500 {\color{red}{\left(- t^{-1}\right)}}=- 3 \ln{\left(\left|{t}\right| \right)} + 2500 {\color{red}{\left(- \frac{1}{t}\right)}}$$

따라서,

$$\int{\frac{2500 - 3 t}{t^{2}} d t} = - 3 \ln{\left(\left|{t}\right| \right)} - \frac{2500}{t}$$

적분 상수를 추가하세요:

$$\int{\frac{2500 - 3 t}{t^{2}} d t} = - 3 \ln{\left(\left|{t}\right| \right)} - \frac{2500}{t}+C$$

정답

$$$\int \frac{2500 - 3 t}{t^{2}}\, dt = \left(- 3 \ln\left(\left|{t}\right|\right) - \frac{2500}{t}\right) + C$$$A


Please try a new game Rotatly