$$$- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x} d x} - \int{2 x d x} + \int{3 \cos{\left(x \right)} d x}\right)}}$$
$$$\frac{1}{x}$$$의 적분은 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \int{2 x d x} + \int{3 \cos{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{2 x d x} + \int{3 \cos{\left(x \right)} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$$\ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - {\color{red}{\int{2 x d x}}} = \ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - {\color{red}{\left(2 \int{x d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$\ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - 2 {\color{red}{\int{x d x}}}=\ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\ln{\left(\left|{x}\right| \right)} + \int{3 \cos{\left(x \right)} d x} - 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=3$$$와 $$$f{\left(x \right)} = \cos{\left(x \right)}$$$에 적용하세요:
$$- x^{2} + \ln{\left(\left|{x}\right| \right)} + {\color{red}{\int{3 \cos{\left(x \right)} d x}}} = - x^{2} + \ln{\left(\left|{x}\right| \right)} + {\color{red}{\left(3 \int{\cos{\left(x \right)} d x}\right)}}$$
코사인의 적분은 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- x^{2} + \ln{\left(\left|{x}\right| \right)} + 3 {\color{red}{\int{\cos{\left(x \right)} d x}}} = - x^{2} + \ln{\left(\left|{x}\right| \right)} + 3 {\color{red}{\sin{\left(x \right)}}}$$
따라서,
$$\int{\left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)d x} = - x^{2} + \ln{\left(\left|{x}\right| \right)} + 3 \sin{\left(x \right)}$$
적분 상수를 추가하세요:
$$\int{\left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)d x} = - x^{2} + \ln{\left(\left|{x}\right| \right)} + 3 \sin{\left(x \right)}+C$$
정답
$$$\int \left(- 2 x + 3 \cos{\left(x \right)} + \frac{1}{x}\right)\, dx = \left(- x^{2} + \ln\left(\left|{x}\right|\right) + 3 \sin{\left(x \right)}\right) + C$$$A