$$$\frac{\sqrt{x^{2} - 100}}{x}$$$의 적분
사용자 입력
$$$\int \frac{\sqrt{x^{2} - 100}}{x}\, dx$$$을(를) 구하시오.
풀이
$$$x=10 \cosh{\left(u \right)}$$$라 하자.
따라서 $$$dx=\left(10 \cosh{\left(u \right)}\right)^{\prime }du = 10 \sinh{\left(u \right)} du$$$ (풀이 과정은 »에서 볼 수 있습니다).
또한 $$$u=\operatorname{acosh}{\left(\frac{x}{10} \right)}$$$가 성립한다.
따라서,
$$$\frac{\sqrt{x^{2} - 100}}{x} = \frac{\sqrt{100 \cosh^{2}{\left( u \right)} - 100}}{10 \cosh{\left( u \right)}}$$$
$$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$ 항등식을 사용하시오:
$$$\frac{\sqrt{100 \cosh^{2}{\left( u \right)} - 100}}{10 \cosh{\left( u \right)}}=\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}}$$$
$$$\sinh{\left( u \right)} \ge 0$$$라고 가정하면, 다음을 얻습니다:
$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)}}$$$
따라서,
$${\color{red}{\int{\frac{\sqrt{x^{2} - 100}}{x} d x}}} = {\color{red}{\int{\frac{10 \sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=10$$$와 $$$f{\left(u \right)} = \frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}}$$$에 적용하세요:
$${\color{red}{\int{\frac{10 \sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = {\color{red}{\left(10 \int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}\right)}}$$
$$$\alpha= u $$$에 대해 $$$\cosh^2\left(\alpha \right)=\sinh^2\left(\alpha \right)+1$$$ 공식을 사용하여, 분자와 분모에 쌍곡코사인을 한 번 곱하고 나머지는 모두 쌍곡사인으로 표현하라:
$$10 {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = 10 {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}}$$
$$$v=\sinh{\left(u \right)}$$$라 하자.
그러면 $$$dv=\left(\sinh{\left(u \right)}\right)^{\prime }du = \cosh{\left(u \right)} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cosh{\left(u \right)} du = dv$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$10 {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}} = 10 {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
분수식을 다시 쓰고 분리하세요:
$$10 {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = 10 {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
각 항별로 적분하십시오:
$$10 {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = 10 {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
상수 법칙 $$$\int c\, dv = c v$$$을 $$$c=1$$$에 적용하십시오:
$$- 10 \int{\frac{1}{v^{2} + 1} d v} + 10 {\color{red}{\int{1 d v}}} = - 10 \int{\frac{1}{v^{2} + 1} d v} + 10 {\color{red}{v}}$$
$$$\frac{1}{v^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$10 v - 10 {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = 10 v - 10 {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
다음 $$$v=\sinh{\left(u \right)}$$$을 기억하라:
$$- 10 \operatorname{atan}{\left({\color{red}{v}} \right)} + 10 {\color{red}{v}} = - 10 \operatorname{atan}{\left({\color{red}{\sinh{\left(u \right)}}} \right)} + 10 {\color{red}{\sinh{\left(u \right)}}}$$
다음 $$$u=\operatorname{acosh}{\left(\frac{x}{10} \right)}$$$을 기억하라:
$$10 \sinh{\left({\color{red}{u}} \right)} - 10 \operatorname{atan}{\left(\sinh{\left({\color{red}{u}} \right)} \right)} = 10 \sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{10} \right)}}} \right)} - 10 \operatorname{atan}{\left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{10} \right)}}} \right)} \right)}$$
따라서,
$$\int{\frac{\sqrt{x^{2} - 100}}{x} d x} = 10 \sqrt{\frac{x}{10} - 1} \sqrt{\frac{x}{10} + 1} - 10 \operatorname{atan}{\left(\sqrt{\frac{x}{10} - 1} \sqrt{\frac{x}{10} + 1} \right)}$$
간단히 하시오:
$$\int{\frac{\sqrt{x^{2} - 100}}{x} d x} = \sqrt{x - 10} \sqrt{x + 10} - 10 \operatorname{atan}{\left(\frac{\sqrt{x - 10} \sqrt{x + 10}}{10} \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{\sqrt{x^{2} - 100}}{x} d x} = \sqrt{x - 10} \sqrt{x + 10} - 10 \operatorname{atan}{\left(\frac{\sqrt{x - 10} \sqrt{x + 10}}{10} \right)}+C$$
정답
$$$\int \frac{\sqrt{x^{2} - 100}}{x}\, dx = \left(\sqrt{x - 10} \sqrt{x + 10} - 10 \operatorname{atan}{\left(\frac{\sqrt{x - 10} \sqrt{x + 10}}{10} \right)}\right) + C$$$A