$$$\frac{\pi x^{2} \ln\left(3\right)}{e^{\pi}}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\pi x^{2} \ln\left(3\right)}{e^{\pi}}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{\pi \ln{\left(3 \right)}}{e^{\pi}}$$$와 $$$f{\left(x \right)} = x^{2}$$$에 적용하세요:
$${\color{red}{\int{\frac{\pi x^{2} \ln{\left(3 \right)}}{e^{\pi}} d x}}} = {\color{red}{\frac{\pi \ln{\left(3 \right)} \int{x^{2} d x}}{e^{\pi}}}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$\frac{\pi \ln{\left(3 \right)} {\color{red}{\int{x^{2} d x}}}}{e^{\pi}}=\frac{\pi \ln{\left(3 \right)} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{e^{\pi}}=\frac{\pi \ln{\left(3 \right)} {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{e^{\pi}}$$
따라서,
$$\int{\frac{\pi x^{2} \ln{\left(3 \right)}}{e^{\pi}} d x} = \frac{\pi x^{3} \ln{\left(3 \right)}}{3 e^{\pi}}$$
적분 상수를 추가하세요:
$$\int{\frac{\pi x^{2} \ln{\left(3 \right)}}{e^{\pi}} d x} = \frac{\pi x^{3} \ln{\left(3 \right)}}{3 e^{\pi}}+C$$
정답
$$$\int \frac{\pi x^{2} \ln\left(3\right)}{e^{\pi}}\, dx = \frac{\pi x^{3} \ln\left(3\right)}{3 e^{\pi}} + C$$$A