$$$\frac{x^{6} - 1}{x^{2} + 1}$$$의 적분
사용자 입력
$$$\int \frac{x^{6} - 1}{x^{2} + 1}\, dx$$$을(를) 구하시오.
풀이
분자의 차수가 분모의 차수보다 크거나 같으므로 다항식의 긴 나눗셈을 수행하십시오(단계는 »에서 볼 수 있습니다):
$${\color{red}{\int{\frac{x^{6} - 1}{x^{2} + 1} d x}}} = {\color{red}{\int{\left(x^{4} - x^{2} + 1 - \frac{2}{x^{2} + 1}\right)d x}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(x^{4} - x^{2} + 1 - \frac{2}{x^{2} + 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{x^{2} d x} + \int{x^{4} d x} - \int{\frac{2}{x^{2} + 1} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=1$$$에 적용하십시오:
$$- \int{x^{2} d x} + \int{x^{4} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\int{1 d x}}} = - \int{x^{2} d x} + \int{x^{4} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{x}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=4$$$에 적용합니다:
$$x - \int{x^{2} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\int{x^{4} d x}}}=x - \int{x^{2} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=x - \int{x^{2} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$\frac{x^{5}}{5} + x - \int{\frac{2}{x^{2} + 1} d x} - {\color{red}{\int{x^{2} d x}}}=\frac{x^{5}}{5} + x - \int{\frac{2}{x^{2} + 1} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\frac{x^{5}}{5} + x - \int{\frac{2}{x^{2} + 1} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = \frac{1}{x^{2} + 1}$$$에 적용하세요:
$$\frac{x^{5}}{5} - \frac{x^{3}}{3} + x - {\color{red}{\int{\frac{2}{x^{2} + 1} d x}}} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - {\color{red}{\left(2 \int{\frac{1}{x^{2} + 1} d x}\right)}}$$
$$$\frac{1}{x^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$\frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
따라서,
$$\int{\frac{x^{6} - 1}{x^{2} + 1} d x} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 \operatorname{atan}{\left(x \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{x^{6} - 1}{x^{2} + 1} d x} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 \operatorname{atan}{\left(x \right)}+C$$
정답
$$$\int \frac{x^{6} - 1}{x^{2} + 1}\, dx = \left(\frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 \operatorname{atan}{\left(x \right)}\right) + C$$$A