$$$\frac{e^{2 x}}{e^{x} + 1}$$$의 적분
사용자 입력
$$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx$$$을(를) 구하시오.
풀이
$$$u=e^{x}$$$라 하자.
그러면 $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$e^{x} dx = du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\frac{e^{2 x}}{e^{x} + 1} d x}}} = {\color{red}{\int{\frac{u}{u + 1} d u}}}$$
분수식을 다시 쓰고 분리하세요:
$${\color{red}{\int{\frac{u}{u + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u + 1} d u}\right)}}$$
상수 법칙 $$$\int c\, du = c u$$$을 $$$c=1$$$에 적용하십시오:
$$- \int{\frac{1}{u + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u + 1} d u} + {\color{red}{u}}$$
$$$v=u + 1$$$라 하자.
그러면 $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = dv$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$u - {\color{red}{\int{\frac{1}{u + 1} d u}}} = u - {\color{red}{\int{\frac{1}{v} d v}}}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$u - {\color{red}{\int{\frac{1}{v} d v}}} = u - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
다음 $$$v=u + 1$$$을 기억하라:
$$u - \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = u - \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}$$
다음 $$$u=e^{x}$$$을 기억하라:
$$- \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + {\color{red}{u}} = - \ln{\left(\left|{1 + {\color{red}{e^{x}}}}\right| \right)} + {\color{red}{e^{x}}}$$
따라서,
$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}+C$$
정답
$$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx = \left(e^{x} - \ln\left(e^{x} + 1\right)\right) + C$$$A