$$$\frac{4 x^{2} - 3}{x^{2}}$$$의 적분
사용자 입력
$$$\int \frac{4 x^{2} - 3}{x^{2}}\, dx$$$을(를) 구하시오.
풀이
Expand the expression:
$${\color{red}{\int{\frac{4 x^{2} - 3}{x^{2}} d x}}} = {\color{red}{\int{\left(4 - \frac{3}{x^{2}}\right)d x}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(4 - \frac{3}{x^{2}}\right)d x}}} = {\color{red}{\left(\int{4 d x} - \int{\frac{3}{x^{2}} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=4$$$에 적용하십시오:
$$- \int{\frac{3}{x^{2}} d x} + {\color{red}{\int{4 d x}}} = - \int{\frac{3}{x^{2}} d x} + {\color{red}{\left(4 x\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=3$$$와 $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$에 적용하세요:
$$4 x - {\color{red}{\int{\frac{3}{x^{2}} d x}}} = 4 x - {\color{red}{\left(3 \int{\frac{1}{x^{2}} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:
$$4 x - 3 {\color{red}{\int{\frac{1}{x^{2}} d x}}}=4 x - 3 {\color{red}{\int{x^{-2} d x}}}=4 x - 3 {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=4 x - 3 {\color{red}{\left(- x^{-1}\right)}}=4 x - 3 {\color{red}{\left(- \frac{1}{x}\right)}}$$
따라서,
$$\int{\frac{4 x^{2} - 3}{x^{2}} d x} = 4 x + \frac{3}{x}$$
적분 상수를 추가하세요:
$$\int{\frac{4 x^{2} - 3}{x^{2}} d x} = 4 x + \frac{3}{x}+C$$
정답
$$$\int \frac{4 x^{2} - 3}{x^{2}}\, dx = \left(4 x + \frac{3}{x}\right) + C$$$A