$$$x \sin{\left(x \right)}$$$의 이차 도함수

계산기는 단계별로 $$$x \sin{\left(x \right)}$$$의 이계도함수를 구합니다.

관련 계산기: 미분 계산기, 로그 미분 계산기

자동 감지를 위해 비워 두세요.
특정 점에서의 도함수가 필요하지 않다면 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right)$$$을(를) 구하시오.

풀이

제1도함수 $$$\frac{d}{dx} \left(x \sin{\left(x \right)}\right)$$$를 구하세요

$$$f{\left(x \right)} = x$$$$$$g{\left(x \right)} = \sin{\left(x \right)}$$$에 대해 곱의 미분법칙 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을 적용하십시오:

$${\color{red}\left(\frac{d}{dx} \left(x \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \sin{\left(x \right)} + x \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

사인 함수의 도함수는 $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$x {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \sin{\left(x \right)} \frac{d}{dx} \left(x\right) = x {\color{red}\left(\cos{\left(x \right)}\right)} + \sin{\left(x \right)} \frac{d}{dx} \left(x\right)$$

멱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$x \cos{\left(x \right)} + \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \cos{\left(x \right)} + \sin{\left(x \right)} {\color{red}\left(1\right)}$$

따라서, $$$\frac{d}{dx} \left(x \sin{\left(x \right)}\right) = x \cos{\left(x \right)} + \sin{\left(x \right)}$$$.

다음으로, $$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right) = \frac{d}{dx} \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)$$$

합/차의 도함수는 도함수들의 합/차이다:

$${\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x \right)}\right) + \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

사인 함수의 도함수는 $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(x \cos{\left(x \right)}\right) = {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(x \cos{\left(x \right)}\right)$$

$$$f{\left(x \right)} = x$$$$$$g{\left(x \right)} = \cos{\left(x \right)}$$$에 대해 곱의 미분법칙 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을 적용하십시오:

$$\cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x \right)}\right)\right)} = \cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x\right) \cos{\left(x \right)} + x \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$

멱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$x \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \cos{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \cos{\left(x \right)} = x \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \cos{\left(x \right)} {\color{red}\left(1\right)} + \cos{\left(x \right)}$$

코사인의 도함수는 $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$입니다:

$$x {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} + 2 \cos{\left(x \right)} = x {\color{red}\left(- \sin{\left(x \right)}\right)} + 2 \cos{\left(x \right)}$$

따라서, $$$\frac{d}{dx} \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) = - x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$$.

따라서 $$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right) = - x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$$.

정답

$$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right) = - x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$$A


Please try a new game Rotatly