$$$\cos^{2}{\left(x \right)}$$$의 이차 도함수
사용자 입력
$$$\frac{d^{2}}{dx^{2}} \left(\cos^{2}{\left(x \right)}\right)$$$을(를) 구하시오.
풀이
제1도함수 $$$\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right)$$$를 구하세요
함수 $$$\cos^{2}{\left(x \right)}$$$는 두 함수 $$$f{\left(u \right)} = u^{2}$$$와 $$$g{\left(x \right)} = \cos{\left(x \right)}$$$의 합성함수 $$$f{\left(g{\left(x \right)} \right)}$$$이다.
연쇄법칙 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을(를) 적용하십시오:
$${\color{red}\left(\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$거듭제곱법칙 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$을 $$$n = 2$$$에 적용합니다:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)$$역치환:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = 2 {\color{red}\left(\cos{\left(x \right)}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)$$코사인의 도함수는 $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$입니다:
$$2 \cos{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = 2 \cos{\left(x \right)} {\color{red}\left(- \sin{\left(x \right)}\right)}$$간단히 하시오:
$$- 2 \sin{\left(x \right)} \cos{\left(x \right)} = - \sin{\left(2 x \right)}$$따라서, $$$\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right) = - \sin{\left(2 x \right)}$$$.
다음으로, $$$\frac{d^{2}}{dx^{2}} \left(\cos^{2}{\left(x \right)}\right) = \frac{d}{dx} \left(- \sin{\left(2 x \right)}\right)$$$
상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$을 $$$c = -1$$$와 $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$에 적용합니다:
$${\color{red}\left(\frac{d}{dx} \left(- \sin{\left(2 x \right)}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)}$$함수 $$$\sin{\left(2 x \right)}$$$는 두 함수 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$와 $$$g{\left(x \right)} = 2 x$$$의 합성함수 $$$f{\left(g{\left(x \right)} \right)}$$$이다.
연쇄법칙 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을(를) 적용하십시오:
$$- {\color{red}\left(\frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)} = - {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(2 x\right)\right)}$$사인 함수의 도함수는 $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$$- {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(2 x\right) = - {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(2 x\right)$$역치환:
$$- \cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(2 x\right) = - \cos{\left({\color{red}\left(2 x\right)} \right)} \frac{d}{dx} \left(2 x\right)$$상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$을 $$$c = 2$$$와 $$$f{\left(x \right)} = x$$$에 적용합니다:
$$- \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = - \cos{\left(2 x \right)} {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$멱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- 2 \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - 2 \cos{\left(2 x \right)} {\color{red}\left(1\right)}$$따라서, $$$\frac{d}{dx} \left(- \sin{\left(2 x \right)}\right) = - 2 \cos{\left(2 x \right)}$$$.
따라서 $$$\frac{d^{2}}{dx^{2}} \left(\cos^{2}{\left(x \right)}\right) = - 2 \cos{\left(2 x \right)}$$$.
정답
$$$\frac{d^{2}}{dx^{2}} \left(\cos^{2}{\left(x \right)}\right) = - 2 \cos{\left(2 x \right)}$$$A