평균값 정리 계산기

평균값 정리를 단계별로 적용하세요

이 계산기는 주어진 구간에서 주어진 함수에 대해 평균값 정리의 결론을 만족하는 모든 값 $$$c$$$를 (단계를 보여 주며) 찾아줍니다. 롤의 정리는 평균값 정리의 특수한 경우입니다( $$$f(a)=f(b)$$$인 경우).

Enter a function:

Enter an interval: $$$[$$$, $$$]$$$

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find all numbers $$$c$$$ (with steps shown) to satisfy the conclusions of the Mean Value Theorem for the function $$$f=e^{- x} \sin{\left(x \right)}$$$ on the interval $$$\left[0, \pi\right]$$$.

The Mean Value Theorem states that for a continuous and differentiable function $$$f(x)$$$ on the interval $$$[a,b]$$$ there exists such number $$$c$$$ from the interval $$$(a,b)$$$, that $$$f'(c)=\frac{f(b)-f(a)}{b-a}$$$.

First, evaluate the function at the endpoints of the interval:

$$$f \left( \pi \right) = 0$$$

$$$f \left( 0 \right) = 0$$$

Next, find the derivative: $$$f'(c)=- e^{- c} \sin{\left(c \right)} + e^{- c} \cos{\left(c \right)}$$$ (for steps, see derivative calculator).

Form the equation: $$$- e^{- c} \sin{\left(c \right)} + e^{- c} \cos{\left(c \right)}=\frac{\left( 0\right)-\left( 0\right)}{\left( \pi\right)-\left( 0\right)}$$$

Simplify: $$$- e^{- c} \sin{\left(c \right)} + e^{- c} \cos{\left(c \right)}=0$$$

Solve the equation on the given interval: $$$c=\frac{\pi}{4}$$$

Answer: $$$\frac{\pi}{4}\approx 0.785398163397448$$$


Please try a new game Rotatly