$$$f{\left(x \right)} = x^{4} + 2 x^{3} - 3 x^{2} - 4 x + 12$$$의 근
사용자 입력
$$$x^{4} + 2 x^{3} - 3 x^{2} - 4 x + 12 = 0$$$을(를) 푸세요.
정답
근: $$$- \frac{1}{2} - \frac{\sqrt{9 - 8 \sqrt{2} i}}{2}\approx -2.212338762292707 + 0.825895899523735 i$$$A, 중복도: $$$1$$$A.
근: $$$- \frac{1}{2} + \frac{\sqrt{9 - 8 \sqrt{2} i}}{2}\approx 1.212338762292707 - 0.825895899523735 i$$$A, 중복도: $$$1$$$A.
근: $$$- \frac{1}{2} - \frac{\sqrt{9 + 8 \sqrt{2} i}}{2}\approx -2.212338762292707 - 0.825895899523735 i$$$A, 중복도: $$$1$$$A.
근: $$$- \frac{1}{2} + \frac{\sqrt{9 + 8 \sqrt{2} i}}{2}\approx 1.212338762292707 + 0.825895899523735 i$$$A, 중복도: $$$1$$$A.
Please try a new game Rotatly