$$$a^{x}$$$ の $$$x$$$ に関する積分
入力内容
$$$\int a^{x}\, dx$$$ を求めよ。
解答
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$${\color{red}{\int{a^{x} d x}}} = {\color{red}{\frac{a^{x}}{\ln{\left(a \right)}}}}$$
したがって、
$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$
積分定数を加える:
$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}+C$$
解答
$$$\int a^{x}\, dx = \frac{a^{x}}{\ln\left(a\right)} + C$$$A
Please try a new game Rotatly