$$$x^{5} \left(x^{6} - 7\right)^{4}$$$の積分
入力内容
$$$\int x^{5} \left(x^{6} - 7\right)^{4}\, dx$$$ を求めよ。
解答
$$$u=x^{6} - 7$$$ とする。
すると $$$du=\left(x^{6} - 7\right)^{\prime }dx = 6 x^{5} dx$$$(手順は»で確認できます)、$$$x^{5} dx = \frac{du}{6}$$$ となります。
この積分は次のように書き換えられる
$${\color{red}{\int{x^{5} \left(x^{6} - 7\right)^{4} d x}}} = {\color{red}{\int{\frac{u^{4}}{6} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{6}$$$ と $$$f{\left(u \right)} = u^{4}$$$ に対して適用する:
$${\color{red}{\int{\frac{u^{4}}{6} d u}}} = {\color{red}{\left(\frac{\int{u^{4} d u}}{6}\right)}}$$
$$$n=4$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{{\color{red}{\int{u^{4} d u}}}}{6}=\frac{{\color{red}{\frac{u^{1 + 4}}{1 + 4}}}}{6}=\frac{{\color{red}{\left(\frac{u^{5}}{5}\right)}}}{6}$$
次のことを思い出してください $$$u=x^{6} - 7$$$:
$$\frac{{\color{red}{u}}^{5}}{30} = \frac{{\color{red}{\left(x^{6} - 7\right)}}^{5}}{30}$$
したがって、
$$\int{x^{5} \left(x^{6} - 7\right)^{4} d x} = \frac{\left(x^{6} - 7\right)^{5}}{30}$$
積分定数を加える:
$$\int{x^{5} \left(x^{6} - 7\right)^{4} d x} = \frac{\left(x^{6} - 7\right)^{5}}{30}+C$$
解答
$$$\int x^{5} \left(x^{6} - 7\right)^{4}\, dx = \frac{\left(x^{6} - 7\right)^{5}}{30} + C$$$A