$$$- 4 x^{3} + x^{2}$$$の積分
入力内容
$$$\int \left(- 4 x^{3} + x^{2}\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(- 4 x^{3} + x^{2}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{4 x^{3} d x}\right)}}$$
$$$n=2$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \int{4 x^{3} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{4 x^{3} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{4 x^{3} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=4$$$ と $$$f{\left(x \right)} = x^{3}$$$ に対して適用する:
$$\frac{x^{3}}{3} - {\color{red}{\int{4 x^{3} d x}}} = \frac{x^{3}}{3} - {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$
$$$n=3$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{x^{3}}{3} - 4 {\color{red}{\int{x^{3} d x}}}=\frac{x^{3}}{3} - 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{x^{3}}{3} - 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
したがって、
$$\int{\left(- 4 x^{3} + x^{2}\right)d x} = - x^{4} + \frac{x^{3}}{3}$$
簡単化せよ:
$$\int{\left(- 4 x^{3} + x^{2}\right)d x} = x^{3} \left(\frac{1}{3} - x\right)$$
積分定数を加える:
$$\int{\left(- 4 x^{3} + x^{2}\right)d x} = x^{3} \left(\frac{1}{3} - x\right)+C$$
解答
$$$\int \left(- 4 x^{3} + x^{2}\right)\, dx = x^{3} \left(\frac{1}{3} - x\right) + C$$$A