$$$x^{3} e^{- x}$$$の積分

この計算機は、手順を示しながら$$$x^{3} e^{- x}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int x^{3} e^{- x}\, dx$$$ を求めよ。

解答

積分 $$$\int{x^{3} e^{- x} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x^{3}$$$$$$\operatorname{dv}=e^{- x} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x^{3}\right)^{\prime }dx=3 x^{2} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$(手順は»を参照)。

積分は次のようになります

$${\color{red}{\int{x^{3} e^{- x} d x}}}={\color{red}{\left(x^{3} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 3 x^{2} d x}\right)}}={\color{red}{\left(- x^{3} e^{- x} - \int{\left(- 3 x^{2} e^{- x}\right)d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-3$$$$$$f{\left(x \right)} = x^{2} e^{- x}$$$ に対して適用する:

$$- x^{3} e^{- x} - {\color{red}{\int{\left(- 3 x^{2} e^{- x}\right)d x}}} = - x^{3} e^{- x} - {\color{red}{\left(- 3 \int{x^{2} e^{- x} d x}\right)}}$$

積分 $$$\int{x^{2} e^{- x} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x^{2}$$$$$$\operatorname{dv}=e^{- x} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$(手順は»を参照)。

したがって、

$$- x^{3} e^{- x} + 3 {\color{red}{\int{x^{2} e^{- x} d x}}}=- x^{3} e^{- x} + 3 {\color{red}{\left(x^{2} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 2 x d x}\right)}}=- x^{3} e^{- x} + 3 {\color{red}{\left(- x^{2} e^{- x} - \int{\left(- 2 x e^{- x}\right)d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-2$$$$$$f{\left(x \right)} = x e^{- x}$$$ に対して適用する:

$$- x^{3} e^{- x} - 3 x^{2} e^{- x} - 3 {\color{red}{\int{\left(- 2 x e^{- x}\right)d x}}} = - x^{3} e^{- x} - 3 x^{2} e^{- x} - 3 {\color{red}{\left(- 2 \int{x e^{- x} d x}\right)}}$$

積分 $$$\int{x e^{- x} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=e^{- x} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$(手順は»を参照)。

この積分は次のように書き換えられる

$$- x^{3} e^{- x} - 3 x^{2} e^{- x} + 6 {\color{red}{\int{x e^{- x} d x}}}=- x^{3} e^{- x} - 3 x^{2} e^{- x} + 6 {\color{red}{\left(x \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 1 d x}\right)}}=- x^{3} e^{- x} - 3 x^{2} e^{- x} + 6 {\color{red}{\left(- x e^{- x} - \int{\left(- e^{- x}\right)d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-1$$$$$$f{\left(x \right)} = e^{- x}$$$ に対して適用する:

$$- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{\int{\left(- e^{- x}\right)d x}}} = - x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{\left(- \int{e^{- x} d x}\right)}}$$

$$$u=- x$$$ とする。

すると $$$du=\left(- x\right)^{\prime }dx = - dx$$$(手順は»で確認できます)、$$$dx = - du$$$ となります。

したがって、

$$- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\int{e^{- x} d x}}} = - x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$$$$f{\left(u \right)} = e^{u}$$$ に対して適用する:

$$- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\int{\left(- e^{u}\right)d u}}} = - x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$

指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:

$$- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{\int{e^{u} d u}}} = - x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{e^{u}}}$$

次のことを思い出してください $$$u=- x$$$:

$$- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{{\color{red}{u}}} = - x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{{\color{red}{\left(- x\right)}}}$$

したがって、

$$\int{x^{3} e^{- x} d x} = - x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{- x}$$

簡単化せよ:

$$\int{x^{3} e^{- x} d x} = \left(- x^{3} - 3 x^{2} - 6 x - 6\right) e^{- x}$$

積分定数を加える:

$$\int{x^{3} e^{- x} d x} = \left(- x^{3} - 3 x^{2} - 6 x - 6\right) e^{- x}+C$$

解答

$$$\int x^{3} e^{- x}\, dx = \left(- x^{3} - 3 x^{2} - 6 x - 6\right) e^{- x} + C$$$A


Please try a new game Rotatly