$$$x \sqrt{x - 1}$$$の積分
入力内容
$$$\int x \sqrt{x - 1}\, dx$$$ を求めよ。
解答
$$$u=x - 1$$$ とする。
すると $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
したがって、
$${\color{red}{\int{x \sqrt{x - 1} d x}}} = {\color{red}{\int{\sqrt{u} \left(u + 1\right) d u}}}$$
Expand the expression:
$${\color{red}{\int{\sqrt{u} \left(u + 1\right) d u}}} = {\color{red}{\int{\left(u^{\frac{3}{2}} + \sqrt{u}\right)d u}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(u^{\frac{3}{2}} + \sqrt{u}\right)d u}}} = {\color{red}{\left(\int{\sqrt{u} d u} + \int{u^{\frac{3}{2}} d u}\right)}}$$
$$$n=\frac{1}{2}$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\int{u^{\frac{3}{2}} d u} + {\color{red}{\int{\sqrt{u} d u}}}=\int{u^{\frac{3}{2}} d u} + {\color{red}{\int{u^{\frac{1}{2}} d u}}}=\int{u^{\frac{3}{2}} d u} + {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=\int{u^{\frac{3}{2}} d u} + {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
$$$n=\frac{3}{2}$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{2 u^{\frac{3}{2}}}{3} + {\color{red}{\int{u^{\frac{3}{2}} d u}}}=\frac{2 u^{\frac{3}{2}}}{3} + {\color{red}{\frac{u^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}=\frac{2 u^{\frac{3}{2}}}{3} + {\color{red}{\left(\frac{2 u^{\frac{5}{2}}}{5}\right)}}$$
次のことを思い出してください $$$u=x - 1$$$:
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} + \frac{2 {\color{red}{u}}^{\frac{5}{2}}}{5} = \frac{2 {\color{red}{\left(x - 1\right)}}^{\frac{3}{2}}}{3} + \frac{2 {\color{red}{\left(x - 1\right)}}^{\frac{5}{2}}}{5}$$
したがって、
$$\int{x \sqrt{x - 1} d x} = \frac{2 \left(x - 1\right)^{\frac{5}{2}}}{5} + \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3}$$
簡単化せよ:
$$\int{x \sqrt{x - 1} d x} = \frac{2 \left(x - 1\right)^{\frac{3}{2}} \left(3 x + 2\right)}{15}$$
積分定数を加える:
$$\int{x \sqrt{x - 1} d x} = \frac{2 \left(x - 1\right)^{\frac{3}{2}} \left(3 x + 2\right)}{15}+C$$
解答
$$$\int x \sqrt{x - 1}\, dx = \frac{2 \left(x - 1\right)^{\frac{3}{2}} \left(3 x + 2\right)}{15} + C$$$A