$$$\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)}$$$の積分

この計算機は、手順を示しながら$$$\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)}\, dx$$$ を求めよ。

解答

被積分関数を書き換える:

$${\color{red}{\int{\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)} d x}}} = {\color{red}{\int{\sin{\left(5 x \right)} \cos{\left(5 x \right)} d x}}}$$

$$$u=\sin{\left(5 x \right)}$$$ とする。

すると $$$du=\left(\sin{\left(5 x \right)}\right)^{\prime }dx = 5 \cos{\left(5 x \right)} dx$$$(手順は»で確認できます)、$$$\cos{\left(5 x \right)} dx = \frac{du}{5}$$$ となります。

したがって、

$${\color{red}{\int{\sin{\left(5 x \right)} \cos{\left(5 x \right)} d x}}} = {\color{red}{\int{\frac{u}{5} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{5}$$$$$$f{\left(u \right)} = u$$$ に対して適用する:

$${\color{red}{\int{\frac{u}{5} d u}}} = {\color{red}{\left(\frac{\int{u d u}}{5}\right)}}$$

$$$n=1$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{{\color{red}{\int{u d u}}}}{5}=\frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{5}=\frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{5}$$

次のことを思い出してください $$$u=\sin{\left(5 x \right)}$$$:

$$\frac{{\color{red}{u}}^{2}}{10} = \frac{{\color{red}{\sin{\left(5 x \right)}}}^{2}}{10}$$

したがって、

$$\int{\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)} d x} = \frac{\sin^{2}{\left(5 x \right)}}{10}$$

積分定数を加える:

$$\int{\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)} d x} = \frac{\sin^{2}{\left(5 x \right)}}{10}+C$$

解答

$$$\int \cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)}\, dx = \frac{\sin^{2}{\left(5 x \right)}}{10} + C$$$A


Please try a new game Rotatly