Integral de $$$\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)}\, dx$$$.

Solución

Reescribe el integrando:

$${\color{red}{\int{\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)} d x}}} = {\color{red}{\int{\sin{\left(5 x \right)} \cos{\left(5 x \right)} d x}}}$$

Sea $$$u=\sin{\left(5 x \right)}$$$.

Entonces $$$du=\left(\sin{\left(5 x \right)}\right)^{\prime }dx = 5 \cos{\left(5 x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\cos{\left(5 x \right)} dx = \frac{du}{5}$$$.

La integral se convierte en

$${\color{red}{\int{\sin{\left(5 x \right)} \cos{\left(5 x \right)} d x}}} = {\color{red}{\int{\frac{u}{5} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{5}$$$ y $$$f{\left(u \right)} = u$$$:

$${\color{red}{\int{\frac{u}{5} d u}}} = {\color{red}{\left(\frac{\int{u d u}}{5}\right)}}$$

Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\frac{{\color{red}{\int{u d u}}}}{5}=\frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{5}=\frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{5}$$

Recordemos que $$$u=\sin{\left(5 x \right)}$$$:

$$\frac{{\color{red}{u}}^{2}}{10} = \frac{{\color{red}{\sin{\left(5 x \right)}}}^{2}}{10}$$

Por lo tanto,

$$\int{\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)} d x} = \frac{\sin^{2}{\left(5 x \right)}}{10}$$

Añade la constante de integración:

$$\int{\cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)} d x} = \frac{\sin^{2}{\left(5 x \right)}}{10}+C$$

Respuesta

$$$\int \cos^{2}{\left(5 x \right)} \tan{\left(5 x \right)}\, dx = \frac{\sin^{2}{\left(5 x \right)}}{10} + C$$$A


Please try a new game Rotatly