$$$\operatorname{atan}{\left(4 x \right)}$$$の積分

この計算機は、手順を示しながら$$$\operatorname{atan}{\left(4 x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \operatorname{atan}{\left(4 x \right)}\, dx$$$ を求めよ。

解答

$$$u=4 x$$$ とする。

すると $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{4}$$$ となります。

したがって、

$${\color{red}{\int{\operatorname{atan}{\left(4 x \right)} d x}}} = {\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{4} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{4}$$$$$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$ に対して適用する:

$${\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\operatorname{atan}{\left(u \right)} d u}}{4}\right)}}$$

積分 $$$\int{\operatorname{atan}{\left(u \right)} d u}$$$ には、部分積分法$$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$を用いてください。

$$$\operatorname{m}=\operatorname{atan}{\left(u \right)}$$$$$$\operatorname{dv}=du$$$ とする。

したがって、$$$\operatorname{dm}=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du=\frac{du}{u^{2} + 1}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d u}=u$$$(手順は»を参照)。

積分は次のようになります

$$\frac{{\color{red}{\int{\operatorname{atan}{\left(u \right)} d u}}}}{4}=\frac{{\color{red}{\left(\operatorname{atan}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u^{2} + 1} d u}\right)}}}{4}=\frac{{\color{red}{\left(u \operatorname{atan}{\left(u \right)} - \int{\frac{u}{u^{2} + 1} d u}\right)}}}{4}$$

$$$v=u^{2} + 1$$$ とする。

すると $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$(手順は»で確認できます)、$$$u du = \frac{dv}{2}$$$ となります。

したがって、

$$\frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\int{\frac{u}{u^{2} + 1} d u}}}}{4} = \frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{4}$$

定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \frac{1}{v}$$$ に対して適用する:

$$\frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{4} = \frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}}{4}$$

$$$\frac{1}{v}$$$ の不定積分は $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ です:

$$\frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{8} = \frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{8}$$

次のことを思い出してください $$$v=u^{2} + 1$$$:

$$\frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{8} = \frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{8}$$

次のことを思い出してください $$$u=4 x$$$:

$$- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{8} + \frac{{\color{red}{u}} \operatorname{atan}{\left({\color{red}{u}} \right)}}{4} = - \frac{\ln{\left(1 + {\color{red}{\left(4 x\right)}}^{2} \right)}}{8} + \frac{{\color{red}{\left(4 x\right)}} \operatorname{atan}{\left({\color{red}{\left(4 x\right)}} \right)}}{4}$$

したがって、

$$\int{\operatorname{atan}{\left(4 x \right)} d x} = x \operatorname{atan}{\left(4 x \right)} - \frac{\ln{\left(16 x^{2} + 1 \right)}}{8}$$

積分定数を加える:

$$\int{\operatorname{atan}{\left(4 x \right)} d x} = x \operatorname{atan}{\left(4 x \right)} - \frac{\ln{\left(16 x^{2} + 1 \right)}}{8}+C$$

解答

$$$\int \operatorname{atan}{\left(4 x \right)}\, dx = \left(x \operatorname{atan}{\left(4 x \right)} - \frac{\ln\left(16 x^{2} + 1\right)}{8}\right) + C$$$A


Please try a new game Rotatly