$$$\operatorname{atan}{\left(4 x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \operatorname{atan}{\left(4 x \right)}\, dx$$$.
Çözüm
$$$u=4 x$$$ olsun.
Böylece $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{4}$$$ elde ederiz.
İntegral şu hale gelir
$${\color{red}{\int{\operatorname{atan}{\left(4 x \right)} d x}}} = {\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{4} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{4}$$$ ve $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\operatorname{atan}{\left(u \right)} d u}}{4}\right)}}$$
$$$\int{\operatorname{atan}{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$ kullanın.
$$$\operatorname{m}=\operatorname{atan}{\left(u \right)}$$$ ve $$$\operatorname{dv}=du$$$ olsun.
O halde $$$\operatorname{dm}=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du=\frac{du}{u^{2} + 1}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d u}=u$$$ (adımlar için bkz. »).
İntegral şu hale gelir
$$\frac{{\color{red}{\int{\operatorname{atan}{\left(u \right)} d u}}}}{4}=\frac{{\color{red}{\left(\operatorname{atan}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u^{2} + 1} d u}\right)}}}{4}=\frac{{\color{red}{\left(u \operatorname{atan}{\left(u \right)} - \int{\frac{u}{u^{2} + 1} d u}\right)}}}{4}$$
$$$v=u^{2} + 1$$$ olsun.
Böylece $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (adımlar » görülebilir) ve $$$u du = \frac{dv}{2}$$$ elde ederiz.
Dolayısıyla,
$$\frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\int{\frac{u}{u^{2} + 1} d u}}}}{4} = \frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{4}$$
Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(v \right)} = \frac{1}{v}$$$ ile uygula:
$$\frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{4} = \frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}}{4}$$
$$$\frac{1}{v}$$$'nin integrali $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{8} = \frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{8}$$
Hatırlayın ki $$$v=u^{2} + 1$$$:
$$\frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{8} = \frac{u \operatorname{atan}{\left(u \right)}}{4} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{8}$$
Hatırlayın ki $$$u=4 x$$$:
$$- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{8} + \frac{{\color{red}{u}} \operatorname{atan}{\left({\color{red}{u}} \right)}}{4} = - \frac{\ln{\left(1 + {\color{red}{\left(4 x\right)}}^{2} \right)}}{8} + \frac{{\color{red}{\left(4 x\right)}} \operatorname{atan}{\left({\color{red}{\left(4 x\right)}} \right)}}{4}$$
Dolayısıyla,
$$\int{\operatorname{atan}{\left(4 x \right)} d x} = x \operatorname{atan}{\left(4 x \right)} - \frac{\ln{\left(16 x^{2} + 1 \right)}}{8}$$
İntegrasyon sabitini ekleyin:
$$\int{\operatorname{atan}{\left(4 x \right)} d x} = x \operatorname{atan}{\left(4 x \right)} - \frac{\ln{\left(16 x^{2} + 1 \right)}}{8}+C$$
Cevap
$$$\int \operatorname{atan}{\left(4 x \right)}\, dx = \left(x \operatorname{atan}{\left(4 x \right)} - \frac{\ln\left(16 x^{2} + 1\right)}{8}\right) + C$$$A