$$$\sqrt{9 x^{2} - 1}$$$の積分
入力内容
$$$\int \sqrt{9 x^{2} - 1}\, dx$$$ を求めよ。
解答
$$$x=\frac{\cosh{\left(u \right)}}{3}$$$ とする。
すると $$$dx=\left(\frac{\cosh{\left(u \right)}}{3}\right)^{\prime }du = \frac{\sinh{\left(u \right)}}{3} du$$$ (手順は»で確認できます)。
また、$$$u=\operatorname{acosh}{\left(3 x \right)}$$$が成り立つ。
被積分関数は次のようになる
$$$\sqrt{9 x^{2} - 1} = \sqrt{\cosh^{2}{\left( u \right)} - 1}$$$
恒等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$ を用いよ:
$$$\sqrt{\cosh^{2}{\left( u \right)} - 1}=\sqrt{\sinh^{2}{\left( u \right)}}$$$
$$$\sinh{\left( u \right)} \ge 0$$$ を仮定すると、以下が得られる:
$$$\sqrt{\sinh^{2}{\left( u \right)}} = \sinh{\left( u \right)}$$$
積分は以下のように書き換えられる
$${\color{red}{\int{\sqrt{9 x^{2} - 1} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{3} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{3}$$$ と $$$f{\left(u \right)} = \sinh^{2}{\left(u \right)}$$$ に対して適用する:
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\sinh^{2}{\left(u \right)} d u}}{3}\right)}}$$
冪低減公式 $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$ を $$$\alpha= u $$$ に適用する:
$$\frac{{\color{red}{\int{\sinh^{2}{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\int{\left(\frac{\cosh{\left(2 u \right)}}{2} - \frac{1}{2}\right)d u}}}}{3}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = \cosh{\left(2 u \right)} - 1$$$ に対して適用する:
$$\frac{{\color{red}{\int{\left(\frac{\cosh{\left(2 u \right)}}{2} - \frac{1}{2}\right)d u}}}}{3} = \frac{{\color{red}{\left(\frac{\int{\left(\cosh{\left(2 u \right)} - 1\right)d u}}{2}\right)}}}{3}$$
項別に積分せよ:
$$\frac{{\color{red}{\int{\left(\cosh{\left(2 u \right)} - 1\right)d u}}}}{6} = \frac{{\color{red}{\left(- \int{1 d u} + \int{\cosh{\left(2 u \right)} d u}\right)}}}{6}$$
$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:
$$\frac{\int{\cosh{\left(2 u \right)} d u}}{6} - \frac{{\color{red}{\int{1 d u}}}}{6} = \frac{\int{\cosh{\left(2 u \right)} d u}}{6} - \frac{{\color{red}{u}}}{6}$$
$$$v=2 u$$$ とする。
すると $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$(手順は»で確認できます)、$$$du = \frac{dv}{2}$$$ となります。
したがって、
$$- \frac{u}{6} + \frac{{\color{red}{\int{\cosh{\left(2 u \right)} d u}}}}{6} = - \frac{u}{6} + \frac{{\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{6}$$
定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(v \right)} = \cosh{\left(v \right)}$$$ に対して適用する:
$$- \frac{u}{6} + \frac{{\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{6} = - \frac{u}{6} + \frac{{\color{red}{\left(\frac{\int{\cosh{\left(v \right)} d v}}{2}\right)}}}{6}$$
双曲線余弦関数の積分は $$$\int{\cosh{\left(v \right)} d v} = \sinh{\left(v \right)}$$$ です:
$$- \frac{u}{6} + \frac{{\color{red}{\int{\cosh{\left(v \right)} d v}}}}{12} = - \frac{u}{6} + \frac{{\color{red}{\sinh{\left(v \right)}}}}{12}$$
次のことを思い出してください $$$v=2 u$$$:
$$- \frac{u}{6} + \frac{\sinh{\left({\color{red}{v}} \right)}}{12} = - \frac{u}{6} + \frac{\sinh{\left({\color{red}{\left(2 u\right)}} \right)}}{12}$$
次のことを思い出してください $$$u=\operatorname{acosh}{\left(3 x \right)}$$$:
$$\frac{\sinh{\left(2 {\color{red}{u}} \right)}}{12} - \frac{{\color{red}{u}}}{6} = \frac{\sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(3 x \right)}}} \right)}}{12} - \frac{{\color{red}{\operatorname{acosh}{\left(3 x \right)}}}}{6}$$
したがって、
$$\int{\sqrt{9 x^{2} - 1} d x} = \frac{\sinh{\left(2 \operatorname{acosh}{\left(3 x \right)} \right)}}{12} - \frac{\operatorname{acosh}{\left(3 x \right)}}{6}$$
公式 $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$ を用いて、式を簡単化しなさい:
$$\int{\sqrt{9 x^{2} - 1} d x} = \frac{x \sqrt{3 x - 1} \sqrt{3 x + 1}}{2} - \frac{\operatorname{acosh}{\left(3 x \right)}}{6}$$
積分定数を加える:
$$\int{\sqrt{9 x^{2} - 1} d x} = \frac{x \sqrt{3 x - 1} \sqrt{3 x + 1}}{2} - \frac{\operatorname{acosh}{\left(3 x \right)}}{6}+C$$
解答
$$$\int \sqrt{9 x^{2} - 1}\, dx = \left(\frac{x \sqrt{3 x - 1} \sqrt{3 x + 1}}{2} - \frac{\operatorname{acosh}{\left(3 x \right)}}{6}\right) + C$$$A