Intégrale de $$$\sqrt{9 x^{2} - 1}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sqrt{9 x^{2} - 1}\, dx$$$.
Solution
Soit $$$x=\frac{\cosh{\left(u \right)}}{3}$$$.
Alors $$$dx=\left(\frac{\cosh{\left(u \right)}}{3}\right)^{\prime }du = \frac{\sinh{\left(u \right)}}{3} du$$$ (les étapes peuvent être vues »).
De plus, il s'ensuit que $$$u=\operatorname{acosh}{\left(3 x \right)}$$$.
Ainsi,
$$$\sqrt{9 x^{2} - 1} = \sqrt{\cosh^{2}{\left( u \right)} - 1}$$$
Utilisez l'identité $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$ :
$$$\sqrt{\cosh^{2}{\left( u \right)} - 1}=\sqrt{\sinh^{2}{\left( u \right)}}$$$
En supposant que $$$\sinh{\left( u \right)} \ge 0$$$, nous obtenons ce qui suit :
$$$\sqrt{\sinh^{2}{\left( u \right)}} = \sinh{\left( u \right)}$$$
L’intégrale peut se réécrire sous la forme
$${\color{red}{\int{\sqrt{9 x^{2} - 1} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{3} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{3}$$$ et $$$f{\left(u \right)} = \sinh^{2}{\left(u \right)}$$$ :
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\sinh^{2}{\left(u \right)} d u}}{3}\right)}}$$
Appliquer la formule de réduction de puissance $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$ avec $$$\alpha= u $$$:
$$\frac{{\color{red}{\int{\sinh^{2}{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\int{\left(\frac{\cosh{\left(2 u \right)}}{2} - \frac{1}{2}\right)d u}}}}{3}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cosh{\left(2 u \right)} - 1$$$ :
$$\frac{{\color{red}{\int{\left(\frac{\cosh{\left(2 u \right)}}{2} - \frac{1}{2}\right)d u}}}}{3} = \frac{{\color{red}{\left(\frac{\int{\left(\cosh{\left(2 u \right)} - 1\right)d u}}{2}\right)}}}{3}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(\cosh{\left(2 u \right)} - 1\right)d u}}}}{6} = \frac{{\color{red}{\left(- \int{1 d u} + \int{\cosh{\left(2 u \right)} d u}\right)}}}{6}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$\frac{\int{\cosh{\left(2 u \right)} d u}}{6} - \frac{{\color{red}{\int{1 d u}}}}{6} = \frac{\int{\cosh{\left(2 u \right)} d u}}{6} - \frac{{\color{red}{u}}}{6}$$
Soit $$$v=2 u$$$.
Alors $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = \frac{dv}{2}$$$.
L’intégrale devient
$$- \frac{u}{6} + \frac{{\color{red}{\int{\cosh{\left(2 u \right)} d u}}}}{6} = - \frac{u}{6} + \frac{{\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{6}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(v \right)} = \cosh{\left(v \right)}$$$ :
$$- \frac{u}{6} + \frac{{\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{6} = - \frac{u}{6} + \frac{{\color{red}{\left(\frac{\int{\cosh{\left(v \right)} d v}}{2}\right)}}}{6}$$
La primitive du cosinus hyperbolique est $$$\int{\cosh{\left(v \right)} d v} = \sinh{\left(v \right)}$$$ :
$$- \frac{u}{6} + \frac{{\color{red}{\int{\cosh{\left(v \right)} d v}}}}{12} = - \frac{u}{6} + \frac{{\color{red}{\sinh{\left(v \right)}}}}{12}$$
Rappelons que $$$v=2 u$$$ :
$$- \frac{u}{6} + \frac{\sinh{\left({\color{red}{v}} \right)}}{12} = - \frac{u}{6} + \frac{\sinh{\left({\color{red}{\left(2 u\right)}} \right)}}{12}$$
Rappelons que $$$u=\operatorname{acosh}{\left(3 x \right)}$$$ :
$$\frac{\sinh{\left(2 {\color{red}{u}} \right)}}{12} - \frac{{\color{red}{u}}}{6} = \frac{\sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(3 x \right)}}} \right)}}{12} - \frac{{\color{red}{\operatorname{acosh}{\left(3 x \right)}}}}{6}$$
Par conséquent,
$$\int{\sqrt{9 x^{2} - 1} d x} = \frac{\sinh{\left(2 \operatorname{acosh}{\left(3 x \right)} \right)}}{12} - \frac{\operatorname{acosh}{\left(3 x \right)}}{6}$$
En utilisant les formules $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, simplifiez l'expression :
$$\int{\sqrt{9 x^{2} - 1} d x} = \frac{x \sqrt{3 x - 1} \sqrt{3 x + 1}}{2} - \frac{\operatorname{acosh}{\left(3 x \right)}}{6}$$
Ajouter la constante d'intégration :
$$\int{\sqrt{9 x^{2} - 1} d x} = \frac{x \sqrt{3 x - 1} \sqrt{3 x + 1}}{2} - \frac{\operatorname{acosh}{\left(3 x \right)}}{6}+C$$
Réponse
$$$\int \sqrt{9 x^{2} - 1}\, dx = \left(\frac{x \sqrt{3 x - 1} \sqrt{3 x + 1}}{2} - \frac{\operatorname{acosh}{\left(3 x \right)}}{6}\right) + C$$$A