$$$\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)}\, d\theta$$$ を求めよ。
解答
二倍角の公式 $$$\sin\left(\theta \right)\cos\left(\theta \right)=\frac{1}{2}\sin\left( 2 \theta \right)$$$ を用いて被積分関数を書き換えます:
$${\color{red}{\int{\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\frac{\sin^{6}{\left(2 \theta \right)}}{64} d \theta}}}$$
定数倍の法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ を、$$$c=\frac{1}{64}$$$ と $$$f{\left(\theta \right)} = \sin^{6}{\left(2 \theta \right)}$$$ に対して適用する:
$${\color{red}{\int{\frac{\sin^{6}{\left(2 \theta \right)}}{64} d \theta}}} = {\color{red}{\left(\frac{\int{\sin^{6}{\left(2 \theta \right)} d \theta}}{64}\right)}}$$
冪低減公式 $$$\sin^{6}{\left(\alpha \right)} = - \frac{15 \cos{\left(2 \alpha \right)}}{32} + \frac{3 \cos{\left(4 \alpha \right)}}{16} - \frac{\cos{\left(6 \alpha \right)}}{32} + \frac{5}{16}$$$ を $$$\alpha=2 \theta$$$ に適用する:
$$\frac{{\color{red}{\int{\sin^{6}{\left(2 \theta \right)} d \theta}}}}{64} = \frac{{\color{red}{\int{\left(- \frac{15 \cos{\left(4 \theta \right)}}{32} + \frac{3 \cos{\left(8 \theta \right)}}{16} - \frac{\cos{\left(12 \theta \right)}}{32} + \frac{5}{16}\right)d \theta}}}}{64}$$
定数倍の法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ を、$$$c=\frac{1}{32}$$$ と $$$f{\left(\theta \right)} = - 15 \cos{\left(4 \theta \right)} + 6 \cos{\left(8 \theta \right)} - \cos{\left(12 \theta \right)} + 10$$$ に対して適用する:
$$\frac{{\color{red}{\int{\left(- \frac{15 \cos{\left(4 \theta \right)}}{32} + \frac{3 \cos{\left(8 \theta \right)}}{16} - \frac{\cos{\left(12 \theta \right)}}{32} + \frac{5}{16}\right)d \theta}}}}{64} = \frac{{\color{red}{\left(\frac{\int{\left(- 15 \cos{\left(4 \theta \right)} + 6 \cos{\left(8 \theta \right)} - \cos{\left(12 \theta \right)} + 10\right)d \theta}}{32}\right)}}}{64}$$
項別に積分せよ:
$$\frac{{\color{red}{\int{\left(- 15 \cos{\left(4 \theta \right)} + 6 \cos{\left(8 \theta \right)} - \cos{\left(12 \theta \right)} + 10\right)d \theta}}}}{2048} = \frac{{\color{red}{\left(\int{10 d \theta} - \int{15 \cos{\left(4 \theta \right)} d \theta} + \int{6 \cos{\left(8 \theta \right)} d \theta} - \int{\cos{\left(12 \theta \right)} d \theta}\right)}}}{2048}$$
$$$c=10$$$ に対して定数則 $$$\int c\, d\theta = c \theta$$$ を適用する:
$$- \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{\int{\cos{\left(12 \theta \right)} d \theta}}{2048} + \frac{{\color{red}{\int{10 d \theta}}}}{2048} = - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{\int{\cos{\left(12 \theta \right)} d \theta}}{2048} + \frac{{\color{red}{\left(10 \theta\right)}}}{2048}$$
$$$u=12 \theta$$$ とする。
すると $$$du=\left(12 \theta\right)^{\prime }d\theta = 12 d\theta$$$(手順は»で確認できます)、$$$d\theta = \frac{du}{12}$$$ となります。
したがって、
$$\frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{\cos{\left(12 \theta \right)} d \theta}}}}{2048} = \frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{12} d u}}}}{2048}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{12}$$$ と $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:
$$\frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{12} d u}}}}{2048} = \frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{12}\right)}}}{2048}$$
余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{24576} = \frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\sin{\left(u \right)}}}}{24576}$$
次のことを思い出してください $$$u=12 \theta$$$:
$$\frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{\sin{\left({\color{red}{u}} \right)}}{24576} = \frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{\sin{\left({\color{red}{\left(12 \theta\right)}} \right)}}{24576}$$
定数倍の法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ を、$$$c=15$$$ と $$$f{\left(\theta \right)} = \cos{\left(4 \theta \right)}$$$ に対して適用する:
$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{15 \cos{\left(4 \theta \right)} d \theta}}}}{2048} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\left(15 \int{\cos{\left(4 \theta \right)} d \theta}\right)}}}{2048}$$
$$$u=4 \theta$$$ とする。
すると $$$du=\left(4 \theta\right)^{\prime }d\theta = 4 d\theta$$$(手順は»で確認できます)、$$$d\theta = \frac{du}{4}$$$ となります。
この積分は次のように書き換えられる
$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\int{\cos{\left(4 \theta \right)} d \theta}}}}{2048} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2048}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{4}$$$ と $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:
$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2048} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2048}$$
余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{8192} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\sin{\left(u \right)}}}}{8192}$$
次のことを思い出してください $$$u=4 \theta$$$:
$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 \sin{\left({\color{red}{u}} \right)}}{8192} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 \sin{\left({\color{red}{\left(4 \theta\right)}} \right)}}{8192}$$
定数倍の法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ を、$$$c=6$$$ と $$$f{\left(\theta \right)} = \cos{\left(8 \theta \right)}$$$ に対して適用する:
$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{{\color{red}{\int{6 \cos{\left(8 \theta \right)} d \theta}}}}{2048} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{{\color{red}{\left(6 \int{\cos{\left(8 \theta \right)} d \theta}\right)}}}{2048}$$
$$$u=8 \theta$$$ とする。
すると $$$du=\left(8 \theta\right)^{\prime }d\theta = 8 d\theta$$$(手順は»で確認できます)、$$$d\theta = \frac{du}{8}$$$ となります。
したがって、
$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\int{\cos{\left(8 \theta \right)} d \theta}}}}{1024} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{1024}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{8}$$$ と $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:
$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{1024} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{1024}$$
余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{8192} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\sin{\left(u \right)}}}}{8192}$$
次のことを思い出してください $$$u=8 \theta$$$:
$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 \sin{\left({\color{red}{u}} \right)}}{8192} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 \sin{\left({\color{red}{\left(8 \theta\right)}} \right)}}{8192}$$
したがって、
$$\int{\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)} d \theta} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} + \frac{3 \sin{\left(8 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576}$$
簡単化せよ:
$$\int{\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)} d \theta} = - \frac{- 120 \theta + 45 \sin{\left(4 \theta \right)} - 9 \sin{\left(8 \theta \right)} + \sin{\left(12 \theta \right)}}{24576}$$
積分定数を加える:
$$\int{\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)} d \theta} = - \frac{- 120 \theta + 45 \sin{\left(4 \theta \right)} - 9 \sin{\left(8 \theta \right)} + \sin{\left(12 \theta \right)}}{24576}+C$$
解答
$$$\int \sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)}\, d\theta = - \frac{- 120 \theta + 45 \sin{\left(4 \theta \right)} - 9 \sin{\left(8 \theta \right)} + \sin{\left(12 \theta \right)}}{24576} + C$$$A