Intégrale de $$$\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)}$$$

La calculatrice trouvera l’intégrale/primitive de $$$\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int \sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)}\, d\theta$$$.

Solution

Réécrivez l'intégrande en utilisant la formule de l'angle double $$$\sin\left(\theta \right)\cos\left(\theta \right)=\frac{1}{2}\sin\left( 2 \theta \right)$$$:

$${\color{red}{\int{\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\frac{\sin^{6}{\left(2 \theta \right)}}{64} d \theta}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ avec $$$c=\frac{1}{64}$$$ et $$$f{\left(\theta \right)} = \sin^{6}{\left(2 \theta \right)}$$$ :

$${\color{red}{\int{\frac{\sin^{6}{\left(2 \theta \right)}}{64} d \theta}}} = {\color{red}{\left(\frac{\int{\sin^{6}{\left(2 \theta \right)} d \theta}}{64}\right)}}$$

Appliquer la formule de réduction de puissance $$$\sin^{6}{\left(\alpha \right)} = - \frac{15 \cos{\left(2 \alpha \right)}}{32} + \frac{3 \cos{\left(4 \alpha \right)}}{16} - \frac{\cos{\left(6 \alpha \right)}}{32} + \frac{5}{16}$$$ avec $$$\alpha=2 \theta$$$:

$$\frac{{\color{red}{\int{\sin^{6}{\left(2 \theta \right)} d \theta}}}}{64} = \frac{{\color{red}{\int{\left(- \frac{15 \cos{\left(4 \theta \right)}}{32} + \frac{3 \cos{\left(8 \theta \right)}}{16} - \frac{\cos{\left(12 \theta \right)}}{32} + \frac{5}{16}\right)d \theta}}}}{64}$$

Appliquez la règle du facteur constant $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ avec $$$c=\frac{1}{32}$$$ et $$$f{\left(\theta \right)} = - 15 \cos{\left(4 \theta \right)} + 6 \cos{\left(8 \theta \right)} - \cos{\left(12 \theta \right)} + 10$$$ :

$$\frac{{\color{red}{\int{\left(- \frac{15 \cos{\left(4 \theta \right)}}{32} + \frac{3 \cos{\left(8 \theta \right)}}{16} - \frac{\cos{\left(12 \theta \right)}}{32} + \frac{5}{16}\right)d \theta}}}}{64} = \frac{{\color{red}{\left(\frac{\int{\left(- 15 \cos{\left(4 \theta \right)} + 6 \cos{\left(8 \theta \right)} - \cos{\left(12 \theta \right)} + 10\right)d \theta}}{32}\right)}}}{64}$$

Intégrez terme à terme:

$$\frac{{\color{red}{\int{\left(- 15 \cos{\left(4 \theta \right)} + 6 \cos{\left(8 \theta \right)} - \cos{\left(12 \theta \right)} + 10\right)d \theta}}}}{2048} = \frac{{\color{red}{\left(\int{10 d \theta} - \int{15 \cos{\left(4 \theta \right)} d \theta} + \int{6 \cos{\left(8 \theta \right)} d \theta} - \int{\cos{\left(12 \theta \right)} d \theta}\right)}}}{2048}$$

Appliquez la règle de la constante $$$\int c\, d\theta = c \theta$$$ avec $$$c=10$$$:

$$- \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{\int{\cos{\left(12 \theta \right)} d \theta}}{2048} + \frac{{\color{red}{\int{10 d \theta}}}}{2048} = - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{\int{\cos{\left(12 \theta \right)} d \theta}}{2048} + \frac{{\color{red}{\left(10 \theta\right)}}}{2048}$$

Soit $$$u=12 \theta$$$.

Alors $$$du=\left(12 \theta\right)^{\prime }d\theta = 12 d\theta$$$ (les étapes peuvent être vues »), et nous obtenons $$$d\theta = \frac{du}{12}$$$.

Par conséquent,

$$\frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{\cos{\left(12 \theta \right)} d \theta}}}}{2048} = \frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{12} d u}}}}{2048}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{12}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :

$$\frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{12} d u}}}}{2048} = \frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{12}\right)}}}{2048}$$

L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :

$$\frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{24576} = \frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\sin{\left(u \right)}}}}{24576}$$

Rappelons que $$$u=12 \theta$$$ :

$$\frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{\sin{\left({\color{red}{u}} \right)}}{24576} = \frac{5 \theta}{1024} - \frac{\int{15 \cos{\left(4 \theta \right)} d \theta}}{2048} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{\sin{\left({\color{red}{\left(12 \theta\right)}} \right)}}{24576}$$

Appliquez la règle du facteur constant $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ avec $$$c=15$$$ et $$$f{\left(\theta \right)} = \cos{\left(4 \theta \right)}$$$ :

$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\int{15 \cos{\left(4 \theta \right)} d \theta}}}}{2048} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{{\color{red}{\left(15 \int{\cos{\left(4 \theta \right)} d \theta}\right)}}}{2048}$$

Soit $$$u=4 \theta$$$.

Alors $$$du=\left(4 \theta\right)^{\prime }d\theta = 4 d\theta$$$ (les étapes peuvent être vues »), et nous obtenons $$$d\theta = \frac{du}{4}$$$.

Par conséquent,

$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\int{\cos{\left(4 \theta \right)} d \theta}}}}{2048} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2048}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{4}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :

$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2048} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2048}$$

L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :

$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{8192} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 {\color{red}{\sin{\left(u \right)}}}}{8192}$$

Rappelons que $$$u=4 \theta$$$ :

$$\frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 \sin{\left({\color{red}{u}} \right)}}{8192} = \frac{5 \theta}{1024} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{\int{6 \cos{\left(8 \theta \right)} d \theta}}{2048} - \frac{15 \sin{\left({\color{red}{\left(4 \theta\right)}} \right)}}{8192}$$

Appliquez la règle du facteur constant $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ avec $$$c=6$$$ et $$$f{\left(\theta \right)} = \cos{\left(8 \theta \right)}$$$ :

$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{{\color{red}{\int{6 \cos{\left(8 \theta \right)} d \theta}}}}{2048} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{{\color{red}{\left(6 \int{\cos{\left(8 \theta \right)} d \theta}\right)}}}{2048}$$

Soit $$$u=8 \theta$$$.

Alors $$$du=\left(8 \theta\right)^{\prime }d\theta = 8 d\theta$$$ (les étapes peuvent être vues »), et nous obtenons $$$d\theta = \frac{du}{8}$$$.

Ainsi,

$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\int{\cos{\left(8 \theta \right)} d \theta}}}}{1024} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{1024}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{8}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :

$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{1024} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{1024}$$

L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :

$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{8192} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 {\color{red}{\sin{\left(u \right)}}}}{8192}$$

Rappelons que $$$u=8 \theta$$$ :

$$\frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 \sin{\left({\color{red}{u}} \right)}}{8192} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576} + \frac{3 \sin{\left({\color{red}{\left(8 \theta\right)}} \right)}}{8192}$$

Par conséquent,

$$\int{\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)} d \theta} = \frac{5 \theta}{1024} - \frac{15 \sin{\left(4 \theta \right)}}{8192} + \frac{3 \sin{\left(8 \theta \right)}}{8192} - \frac{\sin{\left(12 \theta \right)}}{24576}$$

Simplifier:

$$\int{\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)} d \theta} = - \frac{- 120 \theta + 45 \sin{\left(4 \theta \right)} - 9 \sin{\left(8 \theta \right)} + \sin{\left(12 \theta \right)}}{24576}$$

Ajouter la constante d'intégration :

$$\int{\sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)} d \theta} = - \frac{- 120 \theta + 45 \sin{\left(4 \theta \right)} - 9 \sin{\left(8 \theta \right)} + \sin{\left(12 \theta \right)}}{24576}+C$$

Réponse

$$$\int \sin^{6}{\left(\theta \right)} \cos^{6}{\left(\theta \right)}\, d\theta = - \frac{- 120 \theta + 45 \sin{\left(4 \theta \right)} - 9 \sin{\left(8 \theta \right)} + \sin{\left(12 \theta \right)}}{24576} + C$$$A


Please try a new game Rotatly