$$$\sin^{3}{\left(x \right)}$$$の積分

この計算機は、手順を示しながら$$$\sin^{3}{\left(x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \sin^{3}{\left(x \right)}\, dx$$$ を求めよ。

解答

正弦を1つ取り出し、残りは余弦で表し、$$$\alpha=x$$$ に対する公式 $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ を用いよ。:

$${\color{red}{\int{\sin^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}}$$

$$$u=\cos{\left(x \right)}$$$ とする。

すると $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\sin{\left(x \right)} dx = - du$$$ となります。

積分は次のようになります

$${\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}} = {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$$$$f{\left(u \right)} = 1 - u^{2}$$$ に対して適用する:

$${\color{red}{\int{\left(u^{2} - 1\right)d u}}} = {\color{red}{\left(- \int{\left(1 - u^{2}\right)d u}\right)}}$$

項別に積分せよ:

$$- {\color{red}{\int{\left(1 - u^{2}\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:

$$\int{u^{2} d u} - {\color{red}{\int{1 d u}}} = \int{u^{2} d u} - {\color{red}{u}}$$

$$$n=2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- u + {\color{red}{\int{u^{2} d u}}}=- u + {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- u + {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

次のことを思い出してください $$$u=\cos{\left(x \right)}$$$:

$$- {\color{red}{u}} + \frac{{\color{red}{u}}^{3}}{3} = - {\color{red}{\cos{\left(x \right)}}} + \frac{{\color{red}{\cos{\left(x \right)}}}^{3}}{3}$$

したがって、

$$\int{\sin^{3}{\left(x \right)} d x} = \frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}$$

積分定数を加える:

$$\int{\sin^{3}{\left(x \right)} d x} = \frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}+C$$

解答

$$$\int \sin^{3}{\left(x \right)}\, dx = \left(\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly