$$$\sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)}\, dt$$$ を求めよ。
解答
被積分関数を、$$$\alpha=t$$$ に対する冪低減公式 $$$\sin^2\left( \alpha \right)=\frac{1}{2}-\frac{1}{2}\cos\left(2 \alpha \right)-$$$ と $$$\beta=t$$$ に対する冪低減公式 $$$\cos^2\left( \beta \right)=\frac{1}{2}+\frac{1}{2}\cos\left(2 \beta \right)+$$$ を用いて書き換えます:
$${\color{red}{\int{\sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)} d t}}} = {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right) \left(\frac{\cos{\left(2 t \right)}}{2} + \frac{1}{2}\right)^{2} d t}}}$$
式を展開:
$${\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right) \left(\frac{\cos{\left(2 t \right)}}{2} + \frac{1}{2}\right)^{2} d t}}} = {\color{red}{\int{\left(- \frac{\cos^{3}{\left(2 t \right)}}{8} - \frac{\cos^{2}{\left(2 t \right)}}{8} + \frac{\cos{\left(2 t \right)}}{8} + \frac{1}{8}\right)d t}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(- \frac{\cos^{3}{\left(2 t \right)}}{8} - \frac{\cos^{2}{\left(2 t \right)}}{8} + \frac{\cos{\left(2 t \right)}}{8} + \frac{1}{8}\right)d t}}} = {\color{red}{\left(\int{\frac{1}{8} d t} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{2}{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t}\right)}}$$
$$$c=\frac{1}{8}$$$ に対して定数則 $$$\int c\, dt = c t$$$ を適用する:
$$\int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{2}{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} + {\color{red}{\int{\frac{1}{8} d t}}} = \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{2}{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} + {\color{red}{\left(\frac{t}{8}\right)}}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\frac{1}{8}$$$ と $$$f{\left(t \right)} = \cos^{2}{\left(2 t \right)}$$$ に対して適用する:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - {\color{red}{\int{\frac{\cos^{2}{\left(2 t \right)}}{8} d t}}} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - {\color{red}{\left(\frac{\int{\cos^{2}{\left(2 t \right)} d t}}{8}\right)}}$$
$$$u=2 t$$$ とする。
すると $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$(手順は»で確認できます)、$$$dt = \frac{du}{2}$$$ となります。
積分は次のようになります
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos^{2}{\left(2 t \right)} d t}}}}{8} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{2} d u}}}}{8}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$ に対して適用する:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{2} d u}}}}{8} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\frac{\int{\cos^{2}{\left(u \right)} d u}}{2}\right)}}}{8}$$
冪低減公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ を $$$\alpha= u $$$ に適用する:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos^{2}{\left(u \right)} d u}}}}{16} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{16}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$ に対して適用する:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{16} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}}{16}$$
項別に積分せよ:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{32} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{32}$$
$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\int{\cos{\left(2 u \right)} d u}}{32} - \frac{{\color{red}{\int{1 d u}}}}{32} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\int{\cos{\left(2 u \right)} d u}}{32} - \frac{{\color{red}{u}}}{32}$$
$$$v=2 u$$$ とする。
すると $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$(手順は»で確認できます)、$$$du = \frac{dv}{2}$$$ となります。
積分は次のようになります
$$\frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{32} = \frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{32}$$
定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ に対して適用する:
$$\frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{32} = \frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{32}$$
余弦の積分は$$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{64} = \frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\sin{\left(v \right)}}}}{64}$$
次のことを思い出してください $$$v=2 u$$$:
$$\frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\sin{\left({\color{red}{v}} \right)}}{64} = \frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{64}$$
次のことを思い出してください $$$u=2 t$$$:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\sin{\left(2 {\color{red}{u}} \right)}}{64} - \frac{{\color{red}{u}}}{32} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\sin{\left(2 {\color{red}{\left(2 t\right)}} \right)}}{64} - \frac{{\color{red}{\left(2 t\right)}}}{32}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\frac{1}{8}$$$ と $$$f{\left(t \right)} = \cos^{3}{\left(2 t \right)}$$$ に対して適用する:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - {\color{red}{\int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t}}} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - {\color{red}{\left(\frac{\int{\cos^{3}{\left(2 t \right)} d t}}{8}\right)}}$$
$$$u=2 t$$$ とする。
すると $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$(手順は»で確認できます)、$$$dt = \frac{du}{2}$$$ となります。
したがって、
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos^{3}{\left(2 t \right)} d t}}}}{8} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos^{3}{\left(u \right)}}{2} d u}}}}{8}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = \cos^{3}{\left(u \right)}$$$ に対して適用する:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos^{3}{\left(u \right)}}{2} d u}}}}{8} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\frac{\int{\cos^{3}{\left(u \right)} d u}}{2}\right)}}}{8}$$
余弦を1つ取り出し、$$$\alpha= u $$$ を用いた公式 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ により、残りはすべて正弦で表せ。:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos^{3}{\left(u \right)} d u}}}}{16} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)} d u}}}}{16}$$
$$$v=\sin{\left(u \right)}$$$ とする。
すると $$$dv=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$(手順は»で確認できます)、$$$\cos{\left(u \right)} du = dv$$$ となります。
したがって、
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)} d u}}}}{16} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(1 - v^{2}\right)d v}}}}{16}$$
項別に積分せよ:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(1 - v^{2}\right)d v}}}}{16} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\int{1 d v} - \int{v^{2} d v}\right)}}}{16}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dv = c v$$$ を適用する:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{\int{v^{2} d v}}{16} - \frac{{\color{red}{\int{1 d v}}}}{16} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{\int{v^{2} d v}}{16} - \frac{{\color{red}{v}}}{16}$$
$$$n=2$$$ を用いて、べき乗の法則 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{t}{16} - \frac{v}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{{\color{red}{\int{v^{2} d v}}}}{16}=\frac{t}{16} - \frac{v}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{{\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{16}=\frac{t}{16} - \frac{v}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{{\color{red}{\left(\frac{v^{3}}{3}\right)}}}{16}$$
次のことを思い出してください $$$v=\sin{\left(u \right)}$$$:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{v}}}{16} + \frac{{\color{red}{v}}^{3}}{48} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\sin{\left(u \right)}}}}{16} + \frac{{\color{red}{\sin{\left(u \right)}}}^{3}}{48}$$
次のことを思い出してください $$$u=2 t$$$:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{\sin{\left({\color{red}{u}} \right)}}{16} + \frac{\sin^{3}{\left({\color{red}{u}} \right)}}{48} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{16} + \frac{\sin^{3}{\left({\color{red}{\left(2 t\right)}} \right)}}{48}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\frac{1}{8}$$$ と $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$ に対して適用する:
$$\frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(2 t \right)}}{16} - \frac{\sin{\left(4 t \right)}}{64} + {\color{red}{\int{\frac{\cos{\left(2 t \right)}}{8} d t}}} = \frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(2 t \right)}}{16} - \frac{\sin{\left(4 t \right)}}{64} + {\color{red}{\left(\frac{\int{\cos{\left(2 t \right)} d t}}{8}\right)}}$$
積分 $$$\int{\cos{\left(2 t \right)} d t}$$$ はすでに計算されています:
$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}$$
したがって、
$$\frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(2 t \right)}}{16} - \frac{\sin{\left(4 t \right)}}{64} + \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{8} = \frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(2 t \right)}}{16} - \frac{\sin{\left(4 t \right)}}{64} + \frac{{\color{red}{\left(\frac{\sin{\left(2 t \right)}}{2}\right)}}}{8}$$
したがって、
$$\int{\sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)} d t} = \frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(4 t \right)}}{64}$$
積分定数を加える:
$$\int{\sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)} d t} = \frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(4 t \right)}}{64}+C$$
解答
$$$\int \sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)}\, dt = \left(\frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(4 t \right)}}{64}\right) + C$$$A