Integral of $$$\sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)}\, dt$$$.
Solution
Rewrite the integrand using the power reducing formulae $$$\sin^2\left( \alpha \right)=\frac{1}{2}-\frac{1}{2}\cos\left(2 \alpha \right)-$$$ with $$$\alpha=t$$$ and $$$\cos^2\left( \beta \right)=\frac{1}{2}+\frac{1}{2}\cos\left(2 \beta \right)+$$$ with $$$\beta=t$$$:
$${\color{red}{\int{\sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)} d t}}} = {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right) \left(\frac{\cos{\left(2 t \right)}}{2} + \frac{1}{2}\right)^{2} d t}}}$$
Expand the expression:
$${\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right) \left(\frac{\cos{\left(2 t \right)}}{2} + \frac{1}{2}\right)^{2} d t}}} = {\color{red}{\int{\left(- \frac{\cos^{3}{\left(2 t \right)}}{8} - \frac{\cos^{2}{\left(2 t \right)}}{8} + \frac{\cos{\left(2 t \right)}}{8} + \frac{1}{8}\right)d t}}}$$
Integrate term by term:
$${\color{red}{\int{\left(- \frac{\cos^{3}{\left(2 t \right)}}{8} - \frac{\cos^{2}{\left(2 t \right)}}{8} + \frac{\cos{\left(2 t \right)}}{8} + \frac{1}{8}\right)d t}}} = {\color{red}{\left(\int{\frac{1}{8} d t} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{2}{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t}\right)}}$$
Apply the constant rule $$$\int c\, dt = c t$$$ with $$$c=\frac{1}{8}$$$:
$$\int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{2}{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} + {\color{red}{\int{\frac{1}{8} d t}}} = \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{2}{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} + {\color{red}{\left(\frac{t}{8}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{8}$$$ and $$$f{\left(t \right)} = \cos^{2}{\left(2 t \right)}$$$:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - {\color{red}{\int{\frac{\cos^{2}{\left(2 t \right)}}{8} d t}}} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - {\color{red}{\left(\frac{\int{\cos^{2}{\left(2 t \right)} d t}}{8}\right)}}$$
Let $$$u=2 t$$$.
Then $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (steps can be seen »), and we have that $$$dt = \frac{du}{2}$$$.
Therefore,
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos^{2}{\left(2 t \right)} d t}}}}{8} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{2} d u}}}}{8}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{2} d u}}}}{8} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\frac{\int{\cos^{2}{\left(u \right)} d u}}{2}\right)}}}{8}$$
Apply the power reducing formula $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ with $$$\alpha= u $$$:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos^{2}{\left(u \right)} d u}}}}{16} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{16}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{16} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}}{16}$$
Integrate term by term:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{32} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{32}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\int{\cos{\left(2 u \right)} d u}}{32} - \frac{{\color{red}{\int{1 d u}}}}{32} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\int{\cos{\left(2 u \right)} d u}}{32} - \frac{{\color{red}{u}}}{32}$$
Let $$$v=2 u$$$.
Then $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (steps can be seen »), and we have that $$$du = \frac{dv}{2}$$$.
So,
$$\frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{32} = \frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{32}$$
Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$\frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{32} = \frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{32}$$
The integral of the cosine is $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{64} = \frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\sin{\left(v \right)}}}}{64}$$
Recall that $$$v=2 u$$$:
$$\frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\sin{\left({\color{red}{v}} \right)}}{64} = \frac{t}{8} - \frac{u}{32} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{64}$$
Recall that $$$u=2 t$$$:
$$\frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\sin{\left(2 {\color{red}{u}} \right)}}{64} - \frac{{\color{red}{u}}}{32} = \frac{t}{8} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t} - \frac{\sin{\left(2 {\color{red}{\left(2 t\right)}} \right)}}{64} - \frac{{\color{red}{\left(2 t\right)}}}{32}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{8}$$$ and $$$f{\left(t \right)} = \cos^{3}{\left(2 t \right)}$$$:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - {\color{red}{\int{\frac{\cos^{3}{\left(2 t \right)}}{8} d t}}} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - {\color{red}{\left(\frac{\int{\cos^{3}{\left(2 t \right)} d t}}{8}\right)}}$$
Let $$$u=2 t$$$.
Then $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (steps can be seen »), and we have that $$$dt = \frac{du}{2}$$$.
So,
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos^{3}{\left(2 t \right)} d t}}}}{8} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos^{3}{\left(u \right)}}{2} d u}}}}{8}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos^{3}{\left(u \right)}$$$:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\frac{\cos^{3}{\left(u \right)}}{2} d u}}}}{8} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\frac{\int{\cos^{3}{\left(u \right)} d u}}{2}\right)}}}{8}$$
Strip out one cosine and write everything else in terms of the sine, using the formula $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ with $$$\alpha= u $$$:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\cos^{3}{\left(u \right)} d u}}}}{16} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)} d u}}}}{16}$$
Let $$$v=\sin{\left(u \right)}$$$.
Then $$$dv=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (steps can be seen »), and we have that $$$\cos{\left(u \right)} du = dv$$$.
So,
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)} d u}}}}{16} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(1 - v^{2}\right)d v}}}}{16}$$
Integrate term by term:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\int{\left(1 - v^{2}\right)d v}}}}{16} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\left(\int{1 d v} - \int{v^{2} d v}\right)}}}{16}$$
Apply the constant rule $$$\int c\, dv = c v$$$ with $$$c=1$$$:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{\int{v^{2} d v}}{16} - \frac{{\color{red}{\int{1 d v}}}}{16} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{\int{v^{2} d v}}{16} - \frac{{\color{red}{v}}}{16}$$
Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$\frac{t}{16} - \frac{v}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{{\color{red}{\int{v^{2} d v}}}}{16}=\frac{t}{16} - \frac{v}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{{\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{16}=\frac{t}{16} - \frac{v}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} + \frac{{\color{red}{\left(\frac{v^{3}}{3}\right)}}}{16}$$
Recall that $$$v=\sin{\left(u \right)}$$$:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{v}}}{16} + \frac{{\color{red}{v}}^{3}}{48} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{{\color{red}{\sin{\left(u \right)}}}}{16} + \frac{{\color{red}{\sin{\left(u \right)}}}^{3}}{48}$$
Recall that $$$u=2 t$$$:
$$\frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{\sin{\left({\color{red}{u}} \right)}}{16} + \frac{\sin^{3}{\left({\color{red}{u}} \right)}}{48} = \frac{t}{16} - \frac{\sin{\left(4 t \right)}}{64} + \int{\frac{\cos{\left(2 t \right)}}{8} d t} - \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{16} + \frac{\sin^{3}{\left({\color{red}{\left(2 t\right)}} \right)}}{48}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{8}$$$ and $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$:
$$\frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(2 t \right)}}{16} - \frac{\sin{\left(4 t \right)}}{64} + {\color{red}{\int{\frac{\cos{\left(2 t \right)}}{8} d t}}} = \frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(2 t \right)}}{16} - \frac{\sin{\left(4 t \right)}}{64} + {\color{red}{\left(\frac{\int{\cos{\left(2 t \right)} d t}}{8}\right)}}$$
The integral $$$\int{\cos{\left(2 t \right)} d t}$$$ was already calculated:
$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}$$
Therefore,
$$\frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(2 t \right)}}{16} - \frac{\sin{\left(4 t \right)}}{64} + \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{8} = \frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(2 t \right)}}{16} - \frac{\sin{\left(4 t \right)}}{64} + \frac{{\color{red}{\left(\frac{\sin{\left(2 t \right)}}{2}\right)}}}{8}$$
Therefore,
$$\int{\sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)} d t} = \frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(4 t \right)}}{64}$$
Add the constant of integration:
$$\int{\sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)} d t} = \frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(4 t \right)}}{64}+C$$
Answer
$$$\int \sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)}\, dt = \left(\frac{t}{16} + \frac{\sin^{3}{\left(2 t \right)}}{48} - \frac{\sin{\left(4 t \right)}}{64}\right) + C$$$A