$$$\ln\left(x - 1\right)$$$の積分
入力内容
$$$\int \ln\left(x - 1\right)\, dx$$$ を求めよ。
解答
$$$u=x - 1$$$ とする。
すると $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
したがって、
$${\color{red}{\int{\ln{\left(x - 1 \right)} d x}}} = {\color{red}{\int{\ln{\left(u \right)} d u}}}$$
積分 $$$\int{\ln{\left(u \right)} d u}$$$ には、部分積分法$$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$を用いてください。
$$$\operatorname{c}=\ln{\left(u \right)}$$$ と $$$\operatorname{dv}=du$$$ とする。
したがって、$$$\operatorname{dc}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d u}=u$$$(手順は»を参照)。
したがって、
$${\color{red}{\int{\ln{\left(u \right)} d u}}}={\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}={\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:
$$u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}} = u \ln{\left(u \right)} - {\color{red}{u}}$$
次のことを思い出してください $$$u=x - 1$$$:
$$- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - {\color{red}{\left(x - 1\right)}} + {\color{red}{\left(x - 1\right)}} \ln{\left({\color{red}{\left(x - 1\right)}} \right)}$$
したがって、
$$\int{\ln{\left(x - 1 \right)} d x} = - x + \left(x - 1\right) \ln{\left(x - 1 \right)} + 1$$
簡単化せよ:
$$\int{\ln{\left(x - 1 \right)} d x} = \left(x - 1\right) \left(\ln{\left(x - 1 \right)} - 1\right)$$
積分定数を加える:
$$\int{\ln{\left(x - 1 \right)} d x} = \left(x - 1\right) \left(\ln{\left(x - 1 \right)} - 1\right)+C$$
解答
$$$\int \ln\left(x - 1\right)\, dx = \left(x - 1\right) \left(\ln\left(x - 1\right) - 1\right) + C$$$A