$$$x e^{2} \cos{\left(5 x \right)}$$$の積分
入力内容
$$$\int x e^{2} \cos{\left(5 x \right)}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=e^{2}$$$ と $$$f{\left(x \right)} = x \cos{\left(5 x \right)}$$$ に対して適用する:
$${\color{red}{\int{x e^{2} \cos{\left(5 x \right)} d x}}} = {\color{red}{e^{2} \int{x \cos{\left(5 x \right)} d x}}}$$
積分 $$$\int{x \cos{\left(5 x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=x$$$ と $$$\operatorname{dv}=\cos{\left(5 x \right)} dx$$$ とする。
したがって、$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{\cos{\left(5 x \right)} d x}=\frac{\sin{\left(5 x \right)}}{5}$$$(手順は»を参照)。
したがって、
$$e^{2} {\color{red}{\int{x \cos{\left(5 x \right)} d x}}}=e^{2} {\color{red}{\left(x \cdot \frac{\sin{\left(5 x \right)}}{5}-\int{\frac{\sin{\left(5 x \right)}}{5} \cdot 1 d x}\right)}}=e^{2} {\color{red}{\left(\frac{x \sin{\left(5 x \right)}}{5} - \int{\frac{\sin{\left(5 x \right)}}{5} d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{5}$$$ と $$$f{\left(x \right)} = \sin{\left(5 x \right)}$$$ に対して適用する:
$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - {\color{red}{\int{\frac{\sin{\left(5 x \right)}}{5} d x}}}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - {\color{red}{\left(\frac{\int{\sin{\left(5 x \right)} d x}}{5}\right)}}\right)$$
$$$u=5 x$$$ とする。
すると $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{5}$$$ となります。
したがって、
$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{5}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{5}\right)$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{5}$$$ と $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:
$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{5}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{5}\right)$$
正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:
$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{25}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{25}\right)$$
次のことを思い出してください $$$u=5 x$$$:
$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} + \frac{\cos{\left({\color{red}{u}} \right)}}{25}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} + \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{25}\right)$$
したがって、
$$\int{x e^{2} \cos{\left(5 x \right)} d x} = \left(\frac{x \sin{\left(5 x \right)}}{5} + \frac{\cos{\left(5 x \right)}}{25}\right) e^{2}$$
簡単化せよ:
$$\int{x e^{2} \cos{\left(5 x \right)} d x} = \frac{\left(5 x \sin{\left(5 x \right)} + \cos{\left(5 x \right)}\right) e^{2}}{25}$$
積分定数を加える:
$$\int{x e^{2} \cos{\left(5 x \right)} d x} = \frac{\left(5 x \sin{\left(5 x \right)} + \cos{\left(5 x \right)}\right) e^{2}}{25}+C$$
解答
$$$\int x e^{2} \cos{\left(5 x \right)}\, dx = \frac{\left(5 x \sin{\left(5 x \right)} + \cos{\left(5 x \right)}\right) e^{2}}{25} + C$$$A