Integrale di $$$x e^{2} \cos{\left(5 x \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$x e^{2} \cos{\left(5 x \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int x e^{2} \cos{\left(5 x \right)}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=e^{2}$$$ e $$$f{\left(x \right)} = x \cos{\left(5 x \right)}$$$:

$${\color{red}{\int{x e^{2} \cos{\left(5 x \right)} d x}}} = {\color{red}{e^{2} \int{x \cos{\left(5 x \right)} d x}}}$$

Per l'integrale $$$\int{x \cos{\left(5 x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=\cos{\left(5 x \right)} dx$$$.

Quindi $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{\cos{\left(5 x \right)} d x}=\frac{\sin{\left(5 x \right)}}{5}$$$ (i passaggi si possono vedere »).

Quindi,

$$e^{2} {\color{red}{\int{x \cos{\left(5 x \right)} d x}}}=e^{2} {\color{red}{\left(x \cdot \frac{\sin{\left(5 x \right)}}{5}-\int{\frac{\sin{\left(5 x \right)}}{5} \cdot 1 d x}\right)}}=e^{2} {\color{red}{\left(\frac{x \sin{\left(5 x \right)}}{5} - \int{\frac{\sin{\left(5 x \right)}}{5} d x}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{5}$$$ e $$$f{\left(x \right)} = \sin{\left(5 x \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - {\color{red}{\int{\frac{\sin{\left(5 x \right)}}{5} d x}}}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - {\color{red}{\left(\frac{\int{\sin{\left(5 x \right)} d x}}{5}\right)}}\right)$$

Sia $$$u=5 x$$$.

Quindi $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{5}$$$.

L'integrale diventa

$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{5}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{5}\right)$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{5}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{5}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{5}\right)$$

L'integrale del seno è $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{25}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{25}\right)$$

Ricordiamo che $$$u=5 x$$$:

$$e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} + \frac{\cos{\left({\color{red}{u}} \right)}}{25}\right) = e^{2} \left(\frac{x \sin{\left(5 x \right)}}{5} + \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{25}\right)$$

Pertanto,

$$\int{x e^{2} \cos{\left(5 x \right)} d x} = \left(\frac{x \sin{\left(5 x \right)}}{5} + \frac{\cos{\left(5 x \right)}}{25}\right) e^{2}$$

Semplifica:

$$\int{x e^{2} \cos{\left(5 x \right)} d x} = \frac{\left(5 x \sin{\left(5 x \right)} + \cos{\left(5 x \right)}\right) e^{2}}{25}$$

Aggiungi la costante di integrazione:

$$\int{x e^{2} \cos{\left(5 x \right)} d x} = \frac{\left(5 x \sin{\left(5 x \right)} + \cos{\left(5 x \right)}\right) e^{2}}{25}+C$$

Risposta

$$$\int x e^{2} \cos{\left(5 x \right)}\, dx = \frac{\left(5 x \sin{\left(5 x \right)} + \cos{\left(5 x \right)}\right) e^{2}}{25} + C$$$A


Please try a new game Rotatly