$$$\frac{1}{5 - x^{2}}$$$の積分
入力内容
$$$\int \frac{1}{5 - x^{2}}\, dx$$$ を求めよ。
解答
部分分数分解を行う (手順は»で確認できます):
$${\color{red}{\int{\frac{1}{5 - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} - \frac{\sqrt{5}}{10 \left(x - \sqrt{5}\right)}\right)d x}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} - \frac{\sqrt{5}}{10 \left(x - \sqrt{5}\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{\sqrt{5}}{10 \left(x - \sqrt{5}\right)} d x} + \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{\sqrt{5}}{10}$$$ と $$$f{\left(x \right)} = \frac{1}{x - \sqrt{5}}$$$ に対して適用する:
$$\int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - {\color{red}{\int{\frac{\sqrt{5}}{10 \left(x - \sqrt{5}\right)} d x}}} = \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - {\color{red}{\left(\frac{\sqrt{5} \int{\frac{1}{x - \sqrt{5}} d x}}{10}\right)}}$$
$$$u=x - \sqrt{5}$$$ とする。
すると $$$du=\left(x - \sqrt{5}\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
積分は次のようになります
$$\int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - \frac{\sqrt{5} {\color{red}{\int{\frac{1}{x - \sqrt{5}} d x}}}}{10} = \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - \frac{\sqrt{5} {\color{red}{\int{\frac{1}{u} d u}}}}{10}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$\int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - \frac{\sqrt{5} {\color{red}{\int{\frac{1}{u} d u}}}}{10} = \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - \frac{\sqrt{5} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{10}$$
次のことを思い出してください $$$u=x - \sqrt{5}$$$:
$$- \frac{\sqrt{5} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{10} + \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} = - \frac{\sqrt{5} \ln{\left(\left|{{\color{red}{\left(x - \sqrt{5}\right)}}}\right| \right)}}{10} + \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{\sqrt{5}}{10}$$$ と $$$f{\left(x \right)} = \frac{1}{x + \sqrt{5}}$$$ に対して適用する:
$$- \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + {\color{red}{\int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x}}} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + {\color{red}{\left(\frac{\sqrt{5} \int{\frac{1}{x + \sqrt{5}} d x}}{10}\right)}}$$
$$$u=x + \sqrt{5}$$$ とする。
すると $$$du=\left(x + \sqrt{5}\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
積分は次のようになります
$$- \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} {\color{red}{\int{\frac{1}{x + \sqrt{5}} d x}}}}{10} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} {\color{red}{\int{\frac{1}{u} d u}}}}{10}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$- \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} {\color{red}{\int{\frac{1}{u} d u}}}}{10} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{10}$$
次のことを思い出してください $$$u=x + \sqrt{5}$$$:
$$- \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{10} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} \ln{\left(\left|{{\color{red}{\left(x + \sqrt{5}\right)}}}\right| \right)}}{10}$$
したがって、
$$\int{\frac{1}{5 - x^{2}} d x} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} \ln{\left(\left|{x + \sqrt{5}}\right| \right)}}{10}$$
簡単化せよ:
$$\int{\frac{1}{5 - x^{2}} d x} = \frac{\sqrt{5} \left(- \ln{\left(\left|{x - \sqrt{5}}\right| \right)} + \ln{\left(\left|{x + \sqrt{5}}\right| \right)}\right)}{10}$$
積分定数を加える:
$$\int{\frac{1}{5 - x^{2}} d x} = \frac{\sqrt{5} \left(- \ln{\left(\left|{x - \sqrt{5}}\right| \right)} + \ln{\left(\left|{x + \sqrt{5}}\right| \right)}\right)}{10}+C$$
解答
$$$\int \frac{1}{5 - x^{2}}\, dx = \frac{\sqrt{5} \left(- \ln\left(\left|{x - \sqrt{5}}\right|\right) + \ln\left(\left|{x + \sqrt{5}}\right|\right)\right)}{10} + C$$$A