Integral of $$$\frac{1}{5 - x^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{5 - x^{2}}\, dx$$$.
Solution
Perform partial fraction decomposition (steps can be seen »):
$${\color{red}{\int{\frac{1}{5 - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} - \frac{\sqrt{5}}{10 \left(x - \sqrt{5}\right)}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} - \frac{\sqrt{5}}{10 \left(x - \sqrt{5}\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{\sqrt{5}}{10 \left(x - \sqrt{5}\right)} d x} + \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{\sqrt{5}}{10}$$$ and $$$f{\left(x \right)} = \frac{1}{x - \sqrt{5}}$$$:
$$\int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - {\color{red}{\int{\frac{\sqrt{5}}{10 \left(x - \sqrt{5}\right)} d x}}} = \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - {\color{red}{\left(\frac{\sqrt{5} \int{\frac{1}{x - \sqrt{5}} d x}}{10}\right)}}$$
Let $$$u=x - \sqrt{5}$$$.
Then $$$du=\left(x - \sqrt{5}\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral becomes
$$\int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - \frac{\sqrt{5} {\color{red}{\int{\frac{1}{x - \sqrt{5}} d x}}}}{10} = \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - \frac{\sqrt{5} {\color{red}{\int{\frac{1}{u} d u}}}}{10}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - \frac{\sqrt{5} {\color{red}{\int{\frac{1}{u} d u}}}}{10} = \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} - \frac{\sqrt{5} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{10}$$
Recall that $$$u=x - \sqrt{5}$$$:
$$- \frac{\sqrt{5} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{10} + \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x} = - \frac{\sqrt{5} \ln{\left(\left|{{\color{red}{\left(x - \sqrt{5}\right)}}}\right| \right)}}{10} + \int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{\sqrt{5}}{10}$$$ and $$$f{\left(x \right)} = \frac{1}{x + \sqrt{5}}$$$:
$$- \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + {\color{red}{\int{\frac{\sqrt{5}}{10 \left(x + \sqrt{5}\right)} d x}}} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + {\color{red}{\left(\frac{\sqrt{5} \int{\frac{1}{x + \sqrt{5}} d x}}{10}\right)}}$$
Let $$$u=x + \sqrt{5}$$$.
Then $$$du=\left(x + \sqrt{5}\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
Therefore,
$$- \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} {\color{red}{\int{\frac{1}{x + \sqrt{5}} d x}}}}{10} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} {\color{red}{\int{\frac{1}{u} d u}}}}{10}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} {\color{red}{\int{\frac{1}{u} d u}}}}{10} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{10}$$
Recall that $$$u=x + \sqrt{5}$$$:
$$- \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{10} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} \ln{\left(\left|{{\color{red}{\left(x + \sqrt{5}\right)}}}\right| \right)}}{10}$$
Therefore,
$$\int{\frac{1}{5 - x^{2}} d x} = - \frac{\sqrt{5} \ln{\left(\left|{x - \sqrt{5}}\right| \right)}}{10} + \frac{\sqrt{5} \ln{\left(\left|{x + \sqrt{5}}\right| \right)}}{10}$$
Simplify:
$$\int{\frac{1}{5 - x^{2}} d x} = \frac{\sqrt{5} \left(- \ln{\left(\left|{x - \sqrt{5}}\right| \right)} + \ln{\left(\left|{x + \sqrt{5}}\right| \right)}\right)}{10}$$
Add the constant of integration:
$$\int{\frac{1}{5 - x^{2}} d x} = \frac{\sqrt{5} \left(- \ln{\left(\left|{x - \sqrt{5}}\right| \right)} + \ln{\left(\left|{x + \sqrt{5}}\right| \right)}\right)}{10}+C$$
Answer
$$$\int \frac{1}{5 - x^{2}}\, dx = \frac{\sqrt{5} \left(- \ln\left(\left|{x - \sqrt{5}}\right|\right) + \ln\left(\left|{x + \sqrt{5}}\right|\right)\right)}{10} + C$$$A