$$$\cos{\left(\theta \right)}$$$の積分
入力内容
$$$\int \cos{\left(\theta \right)}\, d\theta$$$ を求めよ。
解答
余弦の積分は$$$\int{\cos{\left(\theta \right)} d \theta} = \sin{\left(\theta \right)}$$$:
$${\color{red}{\int{\cos{\left(\theta \right)} d \theta}}} = {\color{red}{\sin{\left(\theta \right)}}}$$
したがって、
$$\int{\cos{\left(\theta \right)} d \theta} = \sin{\left(\theta \right)}$$
積分定数を加える:
$$\int{\cos{\left(\theta \right)} d \theta} = \sin{\left(\theta \right)}+C$$
解答
$$$\int \cos{\left(\theta \right)}\, d\theta = \sin{\left(\theta \right)} + C$$$A
Please try a new game Rotatly