$$$\sin{\left(3 x \right)} \cos^{2}{\left(x \right)}$$$の積分

この計算機は、手順を示しながら$$$\sin{\left(3 x \right)} \cos^{2}{\left(x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \sin{\left(3 x \right)} \cos^{2}{\left(x \right)}\, dx$$$ を求めよ。

解答

冪低減公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$$$$\alpha=x$$$ に適用する:

$${\color{red}{\int{\sin{\left(3 x \right)} \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)}}{2} d x}}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)}$$$ に対して適用する:

$${\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)} d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(\sin{\left(3 x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)}\right)d x}}}}{2}$$

項別に積分せよ:

$$\frac{{\color{red}{\int{\left(\sin{\left(3 x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x} + \int{\sin{\left(3 x \right)} d x}\right)}}}{2}$$

公式 $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ を用い、$$$\alpha=3 x$$$$$$\beta=2 x$$$ を使って被積分関数を書き換えなさい。:

$$\frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{2}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \sin{\left(x \right)} + \sin{\left(5 x \right)}$$$ に対して適用する:

$$\frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{2} = \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}{2}\right)}}}{2}$$

項別に積分せよ:

$$\frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}}}{4} = \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(\int{\sin{\left(x \right)} d x} + \int{\sin{\left(5 x \right)} d x}\right)}}}{4}$$

正弦関数の不定積分は$$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$です:

$$\frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{\int{\sin{\left(5 x \right)} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{4} = \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{\int{\sin{\left(5 x \right)} d x}}{4} + \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{4}$$

$$$u=5 x$$$ とする。

すると $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{5}$$$ となります。

したがって、

$$- \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{4} = - \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{4}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{5}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:

$$- \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{4} = - \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{4}$$

正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:

$$- \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{20} = - \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{20}$$

次のことを思い出してください $$$u=5 x$$$:

$$- \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{20} = - \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{20}$$

$$$u=3 x$$$ とする。

すると $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{3}$$$ となります。

積分は次のようになります

$$- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{2} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:

$$- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{2}$$

正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:

$$- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{6} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{6}$$

次のことを思い出してください $$$u=3 x$$$:

$$- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} - \frac{\cos{\left({\color{red}{u}} \right)}}{6} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} - \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{6}$$

したがって、

$$\int{\sin{\left(3 x \right)} \cos^{2}{\left(x \right)} d x} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{6} - \frac{\cos{\left(5 x \right)}}{20}$$

積分定数を加える:

$$\int{\sin{\left(3 x \right)} \cos^{2}{\left(x \right)} d x} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{6} - \frac{\cos{\left(5 x \right)}}{20}+C$$

解答

$$$\int \sin{\left(3 x \right)} \cos^{2}{\left(x \right)}\, dx = \left(- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{6} - \frac{\cos{\left(5 x \right)}}{20}\right) + C$$$A


Please try a new game Rotatly