$$$\sin{\left(3 x \right)} \cos^{2}{\left(x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \sin{\left(3 x \right)} \cos^{2}{\left(x \right)}\, dx$$$.
Çözüm
Kuvvet indirgeme formülü $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$'i $$$\alpha=x$$$ ile uygula:
$${\color{red}{\int{\sin{\left(3 x \right)} \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)}}{2} d x}}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)} d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(\sin{\left(3 x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)}\right)d x}}}}{2}$$
Her terimin integralini alın:
$$\frac{{\color{red}{\int{\left(\sin{\left(3 x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x} + \int{\sin{\left(3 x \right)} d x}\right)}}}{2}$$
İntegralin içindeki ifadeyi $$$\alpha=3 x$$$ ve $$$\beta=2 x$$$ ile birlikte $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ formülünü kullanarak yeniden yazın:
$$\frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = \sin{\left(x \right)} + \sin{\left(5 x \right)}$$$ ile uygula:
$$\frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{2} = \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}{2}\right)}}}{2}$$
Her terimin integralini alın:
$$\frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}}}{4} = \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(\int{\sin{\left(x \right)} d x} + \int{\sin{\left(5 x \right)} d x}\right)}}}{4}$$
Sinüsün integrali $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{\int{\sin{\left(5 x \right)} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{4} = \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{\int{\sin{\left(5 x \right)} d x}}{4} + \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{4}$$
$$$u=5 x$$$ olsun.
Böylece $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{5}$$$ elde ederiz.
O halde,
$$- \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{4} = - \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{4}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{5}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:
$$- \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{4} = - \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{4}$$
Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{20} = - \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{20}$$
Hatırlayın ki $$$u=5 x$$$:
$$- \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{20} = - \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{20}$$
$$$u=3 x$$$ olsun.
Böylece $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{3}$$$ elde ederiz.
İntegral şu hale gelir
$$- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{2} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:
$$- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{2}$$
Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{6} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{6}$$
Hatırlayın ki $$$u=3 x$$$:
$$- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} - \frac{\cos{\left({\color{red}{u}} \right)}}{6} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(5 x \right)}}{20} - \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{6}$$
Dolayısıyla,
$$\int{\sin{\left(3 x \right)} \cos^{2}{\left(x \right)} d x} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{6} - \frac{\cos{\left(5 x \right)}}{20}$$
İntegrasyon sabitini ekleyin:
$$\int{\sin{\left(3 x \right)} \cos^{2}{\left(x \right)} d x} = - \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{6} - \frac{\cos{\left(5 x \right)}}{20}+C$$
Cevap
$$$\int \sin{\left(3 x \right)} \cos^{2}{\left(x \right)}\, dx = \left(- \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{6} - \frac{\cos{\left(5 x \right)}}{20}\right) + C$$$A