$$$3 x - \frac{1}{x^{4}}$$$の積分

この計算機は、手順を示しながら$$$3 x - \frac{1}{x^{4}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(3 x - \frac{1}{x^{4}}\right)\, dx$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(3 x - \frac{1}{x^{4}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{4}} d x} + \int{3 x d x}\right)}}$$

$$$n=-4$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\int{3 x d x} - {\color{red}{\int{\frac{1}{x^{4}} d x}}}=\int{3 x d x} - {\color{red}{\int{x^{-4} d x}}}=\int{3 x d x} - {\color{red}{\frac{x^{-4 + 1}}{-4 + 1}}}=\int{3 x d x} - {\color{red}{\left(- \frac{x^{-3}}{3}\right)}}=\int{3 x d x} - {\color{red}{\left(- \frac{1}{3 x^{3}}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$$$$f{\left(x \right)} = x$$$ に対して適用する:

$${\color{red}{\int{3 x d x}}} + \frac{1}{3 x^{3}} = {\color{red}{\left(3 \int{x d x}\right)}} + \frac{1}{3 x^{3}}$$

$$$n=1$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$3 {\color{red}{\int{x d x}}} + \frac{1}{3 x^{3}}=3 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}} + \frac{1}{3 x^{3}}=3 {\color{red}{\left(\frac{x^{2}}{2}\right)}} + \frac{1}{3 x^{3}}$$

したがって、

$$\int{\left(3 x - \frac{1}{x^{4}}\right)d x} = \frac{3 x^{2}}{2} + \frac{1}{3 x^{3}}$$

簡単化せよ:

$$\int{\left(3 x - \frac{1}{x^{4}}\right)d x} = \frac{9 x^{5} + 2}{6 x^{3}}$$

積分定数を加える:

$$\int{\left(3 x - \frac{1}{x^{4}}\right)d x} = \frac{9 x^{5} + 2}{6 x^{3}}+C$$

解答

$$$\int \left(3 x - \frac{1}{x^{4}}\right)\, dx = \frac{9 x^{5} + 2}{6 x^{3}} + C$$$A


Please try a new game Rotatly