Integrale di $$$3 x - \frac{1}{x^{4}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$3 x - \frac{1}{x^{4}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(3 x - \frac{1}{x^{4}}\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(3 x - \frac{1}{x^{4}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{4}} d x} + \int{3 x d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-4$$$:

$$\int{3 x d x} - {\color{red}{\int{\frac{1}{x^{4}} d x}}}=\int{3 x d x} - {\color{red}{\int{x^{-4} d x}}}=\int{3 x d x} - {\color{red}{\frac{x^{-4 + 1}}{-4 + 1}}}=\int{3 x d x} - {\color{red}{\left(- \frac{x^{-3}}{3}\right)}}=\int{3 x d x} - {\color{red}{\left(- \frac{1}{3 x^{3}}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=3$$$ e $$$f{\left(x \right)} = x$$$:

$${\color{red}{\int{3 x d x}}} + \frac{1}{3 x^{3}} = {\color{red}{\left(3 \int{x d x}\right)}} + \frac{1}{3 x^{3}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$3 {\color{red}{\int{x d x}}} + \frac{1}{3 x^{3}}=3 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}} + \frac{1}{3 x^{3}}=3 {\color{red}{\left(\frac{x^{2}}{2}\right)}} + \frac{1}{3 x^{3}}$$

Pertanto,

$$\int{\left(3 x - \frac{1}{x^{4}}\right)d x} = \frac{3 x^{2}}{2} + \frac{1}{3 x^{3}}$$

Semplifica:

$$\int{\left(3 x - \frac{1}{x^{4}}\right)d x} = \frac{9 x^{5} + 2}{6 x^{3}}$$

Aggiungi la costante di integrazione:

$$\int{\left(3 x - \frac{1}{x^{4}}\right)d x} = \frac{9 x^{5} + 2}{6 x^{3}}+C$$

Risposta

$$$\int \left(3 x - \frac{1}{x^{4}}\right)\, dx = \frac{9 x^{5} + 2}{6 x^{3}} + C$$$A


Please try a new game Rotatly