$$$1 + \frac{2}{x}$$$の積分
入力内容
$$$\int \left(1 + \frac{2}{x}\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(1 + \frac{2}{x}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{2}{x} d x}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$\int{\frac{2}{x} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{2}{x} d x} + {\color{red}{x}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$ と $$$f{\left(x \right)} = \frac{1}{x}$$$ に対して適用する:
$$x + {\color{red}{\int{\frac{2}{x} d x}}} = x + {\color{red}{\left(2 \int{\frac{1}{x} d x}\right)}}$$
$$$\frac{1}{x}$$$ の不定積分は $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$ です:
$$x + 2 {\color{red}{\int{\frac{1}{x} d x}}} = x + 2 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
したがって、
$$\int{\left(1 + \frac{2}{x}\right)d x} = x + 2 \ln{\left(\left|{x}\right| \right)}$$
積分定数を加える:
$$\int{\left(1 + \frac{2}{x}\right)d x} = x + 2 \ln{\left(\left|{x}\right| \right)}+C$$
解答
$$$\int \left(1 + \frac{2}{x}\right)\, dx = \left(x + 2 \ln\left(\left|{x}\right|\right)\right) + C$$$A