Integralen av $$$1 + \frac{2}{x}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(1 + \frac{2}{x}\right)\, dx$$$.
Lösning
Integrera termvis:
$${\color{red}{\int{\left(1 + \frac{2}{x}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{2}{x} d x}\right)}}$$
Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=1$$$:
$$\int{\frac{2}{x} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{2}{x} d x} + {\color{red}{x}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=2$$$ och $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$x + {\color{red}{\int{\frac{2}{x} d x}}} = x + {\color{red}{\left(2 \int{\frac{1}{x} d x}\right)}}$$
Integralen av $$$\frac{1}{x}$$$ är $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$x + 2 {\color{red}{\int{\frac{1}{x} d x}}} = x + 2 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Alltså,
$$\int{\left(1 + \frac{2}{x}\right)d x} = x + 2 \ln{\left(\left|{x}\right| \right)}$$
Lägg till integrationskonstanten:
$$\int{\left(1 + \frac{2}{x}\right)d x} = x + 2 \ln{\left(\left|{x}\right| \right)}+C$$
Svar
$$$\int \left(1 + \frac{2}{x}\right)\, dx = \left(x + 2 \ln\left(\left|{x}\right|\right)\right) + C$$$A