$$$\frac{1}{\sqrt[3]{x}}$$$の積分
入力内容
$$$\int \frac{1}{\sqrt[3]{x}}\, dx$$$ を求めよ。
解答
$$$n=- \frac{1}{3}$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{\frac{1}{\sqrt[3]{x}} d x}}}={\color{red}{\int{x^{- \frac{1}{3}} d x}}}={\color{red}{\frac{x^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1}}}={\color{red}{\left(\frac{3 x^{\frac{2}{3}}}{2}\right)}}$$
したがって、
$$\int{\frac{1}{\sqrt[3]{x}} d x} = \frac{3 x^{\frac{2}{3}}}{2}$$
積分定数を加える:
$$\int{\frac{1}{\sqrt[3]{x}} d x} = \frac{3 x^{\frac{2}{3}}}{2}+C$$
解答
$$$\int \frac{1}{\sqrt[3]{x}}\, dx = \frac{3 x^{\frac{2}{3}}}{2} + C$$$A
Please try a new game Rotatly