$$$\frac{1}{\csc{\left(x \right)}}$$$の積分
入力内容
$$$\int \frac{1}{\csc{\left(x \right)}}\, dx$$$ を求めよ。
解答
被積分関数を正弦関数で書き換えよ:
$${\color{red}{\int{\frac{1}{\csc{\left(x \right)}} d x}}} = {\color{red}{\int{\sin{\left(x \right)} d x}}}$$
正弦関数の不定積分は$$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$です:
$${\color{red}{\int{\sin{\left(x \right)} d x}}} = {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
したがって、
$$\int{\frac{1}{\csc{\left(x \right)}} d x} = - \cos{\left(x \right)}$$
積分定数を加える:
$$\int{\frac{1}{\csc{\left(x \right)}} d x} = - \cos{\left(x \right)}+C$$
解答
$$$\int \frac{1}{\csc{\left(x \right)}}\, dx = - \cos{\left(x \right)} + C$$$A
Please try a new game Rotatly