Integral of $$$\frac{1}{\csc{\left(x \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\csc{\left(x \right)}}\, dx$$$.
Solution
Rewrite the integrand in terms of the sine:
$${\color{red}{\int{\frac{1}{\csc{\left(x \right)}} d x}}} = {\color{red}{\int{\sin{\left(x \right)} d x}}}$$
The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$${\color{red}{\int{\sin{\left(x \right)} d x}}} = {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Therefore,
$$\int{\frac{1}{\csc{\left(x \right)}} d x} = - \cos{\left(x \right)}$$
Add the constant of integration:
$$\int{\frac{1}{\csc{\left(x \right)}} d x} = - \cos{\left(x \right)}+C$$
Answer
$$$\int \frac{1}{\csc{\left(x \right)}}\, dx = - \cos{\left(x \right)} + C$$$A