$$$- \frac{t}{125} + \frac{3 x^{2}}{1000}$$$ の $$$x$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \left(- \frac{t}{125} + \frac{3 x^{2}}{1000}\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(- \frac{t}{125} + \frac{3 x^{2}}{1000}\right)d x}}} = {\color{red}{\left(- \int{\frac{t}{125} d x} + \int{\frac{3 x^{2}}{1000} d x}\right)}}$$
$$$c=\frac{t}{125}$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$\int{\frac{3 x^{2}}{1000} d x} - {\color{red}{\int{\frac{t}{125} d x}}} = \int{\frac{3 x^{2}}{1000} d x} - {\color{red}{\left(\frac{t x}{125}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{3}{1000}$$$ と $$$f{\left(x \right)} = x^{2}$$$ に対して適用する:
$$- \frac{t x}{125} + {\color{red}{\int{\frac{3 x^{2}}{1000} d x}}} = - \frac{t x}{125} + {\color{red}{\left(\frac{3 \int{x^{2} d x}}{1000}\right)}}$$
$$$n=2$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \frac{t x}{125} + \frac{3 {\color{red}{\int{x^{2} d x}}}}{1000}=- \frac{t x}{125} + \frac{3 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{1000}=- \frac{t x}{125} + \frac{3 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{1000}$$
したがって、
$$\int{\left(- \frac{t}{125} + \frac{3 x^{2}}{1000}\right)d x} = - \frac{t x}{125} + \frac{x^{3}}{1000}$$
簡単化せよ:
$$\int{\left(- \frac{t}{125} + \frac{3 x^{2}}{1000}\right)d x} = \frac{x \left(- 8 t + x^{2}\right)}{1000}$$
積分定数を加える:
$$\int{\left(- \frac{t}{125} + \frac{3 x^{2}}{1000}\right)d x} = \frac{x \left(- 8 t + x^{2}\right)}{1000}+C$$
解答
$$$\int \left(- \frac{t}{125} + \frac{3 x^{2}}{1000}\right)\, dx = \frac{x \left(- 8 t + x^{2}\right)}{1000} + C$$$A