$$$\frac{a}{x}$$$ の $$$x$$$ に関する積分
入力内容
$$$\int \frac{a}{x}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=a$$$ と $$$f{\left(x \right)} = \frac{1}{x}$$$ に対して適用する:
$${\color{red}{\int{\frac{a}{x} d x}}} = {\color{red}{a \int{\frac{1}{x} d x}}}$$
$$$\frac{1}{x}$$$ の不定積分は $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$ です:
$$a {\color{red}{\int{\frac{1}{x} d x}}} = a {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
したがって、
$$\int{\frac{a}{x} d x} = a \ln{\left(\left|{x}\right| \right)}$$
積分定数を加える:
$$\int{\frac{a}{x} d x} = a \ln{\left(\left|{x}\right| \right)}+C$$
解答
$$$\int \frac{a}{x}\, dx = a \ln\left(\left|{x}\right|\right) + C$$$A
Please try a new game Rotatly