$$$\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}$$$の積分

この計算機は、手順を示しながら$$$\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}\, dx$$$ を求めよ。

解答

$$$u=\sin{\left(2 x \right)}$$$ とする。

すると $$$du=\left(\sin{\left(2 x \right)}\right)^{\prime }dx = 2 \cos{\left(2 x \right)} dx$$$(手順は»で確認できます)、$$$\cos{\left(2 x \right)} dx = \frac{du}{2}$$$ となります。

したがって、

$${\color{red}{\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 u} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ に対して適用する:

$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

次のことを思い出してください $$$u=\sin{\left(2 x \right)}$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\sin{\left(2 x \right)}}}}\right| \right)}}{2}$$

したがって、

$$\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x} = \frac{\ln{\left(\left|{\sin{\left(2 x \right)}}\right| \right)}}{2}$$

積分定数を加える:

$$\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x} = \frac{\ln{\left(\left|{\sin{\left(2 x \right)}}\right| \right)}}{2}+C$$

解答

$$$\int \frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}\, dx = \frac{\ln\left(\left|{\sin{\left(2 x \right)}}\right|\right)}{2} + C$$$A


Please try a new game Rotatly