Integral de $$$\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}\, dx$$$.

Solución

Sea $$$u=\sin{\left(2 x \right)}$$$.

Entonces $$$du=\left(\sin{\left(2 x \right)}\right)^{\prime }dx = 2 \cos{\left(2 x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\cos{\left(2 x \right)} dx = \frac{du}{2}$$$.

Entonces,

$${\color{red}{\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 u} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Recordemos que $$$u=\sin{\left(2 x \right)}$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\sin{\left(2 x \right)}}}}\right| \right)}}{2}$$

Por lo tanto,

$$\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x} = \frac{\ln{\left(\left|{\sin{\left(2 x \right)}}\right| \right)}}{2}$$

Añade la constante de integración:

$$\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x} = \frac{\ln{\left(\left|{\sin{\left(2 x \right)}}\right| \right)}}{2}+C$$

Respuesta

$$$\int \frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}\, dx = \frac{\ln\left(\left|{\sin{\left(2 x \right)}}\right|\right)}{2} + C$$$A


Please try a new game Rotatly