$$$e^{- x} \operatorname{atan}{\left(e^{x} \right)}$$$の積分

この計算機は、手順を示しながら$$$e^{- x} \operatorname{atan}{\left(e^{x} \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int e^{- x} \operatorname{atan}{\left(e^{x} \right)}\, dx$$$ を求めよ。

解答

$$$u=e^{x}$$$ とする。

すると $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$(手順は»で確認できます)、$$$e^{x} dx = du$$$ となります。

したがって、

$${\color{red}{\int{e^{- x} \operatorname{atan}{\left(e^{x} \right)} d x}}} = {\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{u^{2}} d u}}}$$

$$$v=\frac{1}{u}$$$ とする。

すると $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$(手順は»で確認できます)、$$$\frac{du}{u^{2}} = - dv$$$ となります。

したがって、

$${\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{u^{2}} d u}}} = {\color{red}{\int{\left(- \operatorname{acot}{\left(v \right)}\right)d v}}}$$

定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=-1$$$$$$f{\left(v \right)} = \operatorname{acot}{\left(v \right)}$$$ に対して適用する:

$${\color{red}{\int{\left(- \operatorname{acot}{\left(v \right)}\right)d v}}} = {\color{red}{\left(- \int{\operatorname{acot}{\left(v \right)} d v}\right)}}$$

積分 $$$\int{\operatorname{acot}{\left(v \right)} d v}$$$ には、部分積分法$$$\int \operatorname{m} \operatorname{dy} = \operatorname{m}\operatorname{y} - \int \operatorname{y} \operatorname{dm}$$$を用いてください。

$$$\operatorname{m}=\operatorname{acot}{\left(v \right)}$$$$$$\operatorname{dy}=dv$$$ とする。

したがって、$$$\operatorname{dm}=\left(\operatorname{acot}{\left(v \right)}\right)^{\prime }dv=- \frac{1}{v^{2} + 1} dv$$$(手順は»を参照)および$$$\operatorname{y}=\int{1 d v}=v$$$(手順は»を参照)。

したがって、

$$- {\color{red}{\int{\operatorname{acot}{\left(v \right)} d v}}}=- {\color{red}{\left(\operatorname{acot}{\left(v \right)} \cdot v-\int{v \cdot \left(- \frac{1}{v^{2} + 1}\right) d v}\right)}}=- {\color{red}{\left(v \operatorname{acot}{\left(v \right)} - \int{\left(- \frac{v}{v^{2} + 1}\right)d v}\right)}}$$

$$$w=v^{2} + 1$$$ とする。

すると $$$dw=\left(v^{2} + 1\right)^{\prime }dv = 2 v dv$$$(手順は»で確認できます)、$$$v dv = \frac{dw}{2}$$$ となります。

したがって、

$$- v \operatorname{acot}{\left(v \right)} + {\color{red}{\int{\left(- \frac{v}{v^{2} + 1}\right)d v}}} = - v \operatorname{acot}{\left(v \right)} + {\color{red}{\int{\left(- \frac{1}{2 w}\right)d w}}}$$

定数倍の法則 $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ を、$$$c=- \frac{1}{2}$$$$$$f{\left(w \right)} = \frac{1}{w}$$$ に対して適用する:

$$- v \operatorname{acot}{\left(v \right)} + {\color{red}{\int{\left(- \frac{1}{2 w}\right)d w}}} = - v \operatorname{acot}{\left(v \right)} + {\color{red}{\left(- \frac{\int{\frac{1}{w} d w}}{2}\right)}}$$

$$$\frac{1}{w}$$$ の不定積分は $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$ です:

$$- v \operatorname{acot}{\left(v \right)} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = - v \operatorname{acot}{\left(v \right)} - \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$

次のことを思い出してください $$$w=v^{2} + 1$$$:

$$- v \operatorname{acot}{\left(v \right)} - \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} = - v \operatorname{acot}{\left(v \right)} - \frac{\ln{\left(\left|{{\color{red}{\left(v^{2} + 1\right)}}}\right| \right)}}{2}$$

次のことを思い出してください $$$v=\frac{1}{u}$$$:

$$- \frac{\ln{\left(1 + {\color{red}{v}}^{2} \right)}}{2} - {\color{red}{v}} \operatorname{acot}{\left({\color{red}{v}} \right)} = - \frac{\ln{\left(1 + {\color{red}{\frac{1}{u}}}^{2} \right)}}{2} - {\color{red}{\frac{1}{u}}} \operatorname{acot}{\left({\color{red}{\frac{1}{u}}} \right)}$$

次のことを思い出してください $$$u=e^{x}$$$:

$$- \frac{\ln{\left(1 + {\color{red}{u}}^{-2} \right)}}{2} - {\color{red}{u}}^{-1} \operatorname{acot}{\left({\color{red}{u}}^{-1} \right)} = - \frac{\ln{\left(1 + {\color{red}{e^{x}}}^{-2} \right)}}{2} - {\color{red}{e^{x}}}^{-1} \operatorname{acot}{\left({\color{red}{e^{x}}}^{-1} \right)}$$

したがって、

$$\int{e^{- x} \operatorname{atan}{\left(e^{x} \right)} d x} = - \frac{\ln{\left(1 + e^{- 2 x} \right)}}{2} - e^{- x} \operatorname{acot}{\left(e^{- x} \right)}$$

簡単化せよ:

$$\int{e^{- x} \operatorname{atan}{\left(e^{x} \right)} d x} = x - \frac{\ln{\left(e^{2 x} + 1 \right)}}{2} - e^{- x} \operatorname{atan}{\left(e^{x} \right)}$$

積分定数を加える:

$$\int{e^{- x} \operatorname{atan}{\left(e^{x} \right)} d x} = x - \frac{\ln{\left(e^{2 x} + 1 \right)}}{2} - e^{- x} \operatorname{atan}{\left(e^{x} \right)}+C$$

解答

$$$\int e^{- x} \operatorname{atan}{\left(e^{x} \right)}\, dx = \left(x - \frac{\ln\left(e^{2 x} + 1\right)}{2} - e^{- x} \operatorname{atan}{\left(e^{x} \right)}\right) + C$$$A


Please try a new game Rotatly