定積分・広義積分計算機
定積分と広義積分を手順を追って計算する
この計算機は、定積分(すなわち上下限のある積分)を、広義積分も含めて、解法手順を示しながら計算を試みます。
Solution
Your input: calculate $$$\int_{t^{2}}^{t}\left( \frac{\sin{\left(x \right)}}{x} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{\sin{\left(x \right)}}{x} d x}=\operatorname{Si}{\left(x \right)}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\operatorname{Si}{\left(x \right)}\right)|_{\left(x=t\right)}=\operatorname{Si}{\left(t \right)}$$$
$$$\left(\operatorname{Si}{\left(x \right)}\right)|_{\left(x=t^{2}\right)}=\operatorname{Si}{\left(t^{2} \right)}$$$
$$$\int_{t^{2}}^{t}\left( \frac{\sin{\left(x \right)}}{x} \right)dx=\left(\operatorname{Si}{\left(x \right)}\right)|_{\left(x=t\right)}-\left(\operatorname{Si}{\left(x \right)}\right)|_{\left(x=t^{2}\right)}=\operatorname{Si}{\left(t \right)} - \operatorname{Si}{\left(t^{2} \right)}$$$
Answer: $$$\int_{t^{2}}^{t}\left( \frac{\sin{\left(x \right)}}{x} \right)dx=\operatorname{Si}{\left(t \right)} - \operatorname{Si}{\left(t^{2} \right)}$$$